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ABSTRACT 

This report presents a collection of computer-generated statistical distributions which are useful for performing 
Monte Carlo simulations. The distributions are encapsulated into a C++ class, called "Random," so that they can be 
used with any C++ program. The class currently contains 27 continuous distributions, 9 discrete distributions, 
data-driven distributions, bivariate distributions, and number-theoretic distributions. The class is designed to be 
flexible and extensible, and this is supported in two ways: (1) a function pointer is provided so that the 
user-programmer can specify an arbitrary probability density function, and (2) new distributions can be easily added 
by coding them directly into the class. The format of the report is designed to provide the practitioner of Monte 
Carlo simulations with a handy reference for generating statistical distributions. However, to be self-contained, 
various techniques for generating distributions are also discussed, as well as procedures for estimating distribution 
parameters from data. Since most of these distributions rely upon a good underlying uniform distribution of random 
numbers, several candidate generators are presented along with selection criteria and test results. Indeed, it is noted 
that one of the more popular generators is probably overused and under what conditions it should be avoided. 
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1. SUMMARY 
This report presents a collection of various distributions of random numbers, suitable for performing Monte Carlo 
simulations. They have been organized into a C++ class, called "Random," which is callable from any C++ 
program. Using the Random class is very simple. For example, the following is source code to print 1,000 normal 
variates with a mean of zero and a variance of one. 

// Sample program for using the Random class 

»include <iostream.h> ,,,,-..      ^,DJ       i 
# include  " Random, h" <=        include the definition of the Random class 

void main(  void  ) 

Random rv; <=        declare a random variate 

for   (   int  i  = 0;   i < 1000;   i++   ) ,,..,.,.,. r   , .     i 
cout « rv. normal () «=        reference the normal distribution (with default parameters) 

« endl; 
} 

There are various aspects that the programmer will wish to know at this point, such as how the random number seed 
is set and how to compile and link the sample program. These aspects are discussed later (see Appendix B). The 
point to be emphasized here is that the Random class is very easy and straightforward to use. The class itself is quite 
comprehensive, currently containing 27 continuous distributions, 9 discrete distributions, distributions based on 
empirical data, and bivariate distributions, as well as distributions based on number theory. Moreover, it allows the 
user-programmer to specify an arbitrary function or procedure to use for generating distributions that are not already 
in the collection. It is also shown that it is very easy to extend the collection to include new distributions. 

2. INTRODUCTION 
This report deals with random number distributions, the foundation for performing Monte Carlo simulations. 
Although Lord Kelvin may have been the first to use Monte Carlo methods in his 1901 study of the Boltzmann 
equation in statistical mechanics, their widespread use dates back to the development of the atomic bomb in 1944. 
Monte Carlo methods have been used extensively in the field of nuclear physics for the study of neutron transport 
and radiation shielding. They remain useful whenever the underlying physical law is either unknown or it is known 
but one cannot obtain enough detailed information in order to apply it directly in a deterministic manner. In 
particular, the field of operations research has a long history of employing Monte Carlo simulations. There are 
several reasons for using simulations, but they basically fall into three categories. 

To Supplement Theory 
While the underlying process or physical law may be understood, an analytical solution—or even a solution by 
numerical methods—may not be available. In addition, even in the cases where we possess a deterministic 
solution, we may be unable to obtain the initial conditions or other information necessary to apply it. 

To Supplement Experiment 
Experiments can be very costly or we may be unable to perform the measurements required for a particular 

mathematical model. 

•     Computing Power has Increased while Cost has Decreased 
In 1965, when writing an article for Electronics magazine, Gordon Moore formulated what has since been 
named Moore's Law: the number of components that could be squeezed onto a silicon chip would double every 
year. Moore updated this prediction in 1975 from doubling every year to doubling every two years. These 
observations proved remarkably accurate; the processing technology of 1996, for example, was some eight 
million times more powerful than that of 1966 [Helicon Publishing 1999]. 

In short, computer simulations are viable alternatives to both theory and experiment—and we have every reason to 
believe they will continue to be so in the future. A reliable source of random numbers, and a means of transforming 
them into prescribed distributions, is essential for the success of the simulation approach. This report describes 
various ways to obtain distributions, how to estimate the distribution parameters, descriptions of the distributions, 
choosing a good uniform random number generator, and some illustrations of how the distributions may be used. 



3. METHODS FOR GENERATING RANDOM NUMBER DISTRIBUTIONS 

We wish to generate random numbers,* x, that belong to some domain, x e [*min, xmax], in such a way that the fre- 
quency of occurrence, or probability density, will depend upon the value of x in a prescribed functional form f(x). 
Here, we review several techniques for doing this. We should point out that all of these methods presume that we 
have a supply of uniformly distributed random numbers in the half-closed unit inteval [0,1). These methods are 
only concerned with transforming the uniform random variate on the unit interval into another functional form. The 
subject of how to generate the underlying uniform random variates is discussed in Appendix A. 

We begin with the inverse transformation technique, as it is probably the easiest to understand and is also the method 
most commonly used. A word on notation: f(x) is used to denote the probability density and F(x) is used to denote 
the cumulative distribution function (see the Glossary for a more complete discussion). 

3.1 Inverse Transformation 

If we can invert the cumulative distribution function F(x), then it is a simple matter to generate the probability den- 
sity function f(x). The algorithm for this technique is as follows. 

(1) Generate U ~ U(0,1). 
(2) Return X = F~l(U). 

It is not difficult to see how this method works, with the aid of Figure 1. 

F(x) 

f(x) 

Figure 1. Inverse Transform Method. 
We take uniformly distributed samples along the y axis between 0 and 1. We see that, where the distribution func- 
tion F(x) is relatively steep, there will result a high density of points along the x axis (giving a larger value of /(*)), 
and, on the other hand, where F(x) has a relatively shallow slope, there will result in a corresponding lower density 
of points along the x axis (giving a smaller value of /(*)). More formally, if 

* Of course, all such numbers generated according to precise and specific algorithms on a computer are not truly random at all but only 
exhibit the appearance of randomness and are therefore best described as "pseudo-random." However, throughout this report, we use the 
term "random number" as merely a shorthand to signify the more correct term of "pseudo-random number." 



x = F-\y), (1) 

X 

where F(x) is the indefinite integral F(x) = J f{t)dt of the desired density function /(x), then y = F(x) and 

-T = /<*>• ax 
(2) 

This technique can be illustrated with the Weibull distribution. In this case, we have F(x)=\-e<xlb)C. So, if 
U ~ 1/(0,1) and U = F(X), then we find* X = b [-In (1 - U)]l,c. 
The inverse transform method is a simple, efficient technique for obtaining the probability density, but it requires 
that we be able to invert the distribution function. As this is not always feasible, we need to consider other tech- 
niques as well. 

3.2       Composition 
This technique is a simple extension of the inverse transformation technique. It applies to a situation where the 
probability density function can be written as a linear combination of simpler composition functions and where each 
of the composition functions has an indefinite integral that is invertible.1 Thus, we consider cases where the density 
function /(x) can be expressed as 

i=l 

(3) 

where 

and each of the f, has an indefinite integral, F,(x) with a known inverse. The algorithm is as follows. 

(1) Select index i with probability pt. 
(2) Independently generate U ~ C/(0,1). 
(3) Return X = f7!(J7). 
For example, consider the density function for the Laplace distribution (also called the double exponential distribu- 
tion): 

This can also be written as 

where 

1        (   lx-ah 

f{x) = \h{x) + \h{x\ 

/i(*)-' 

x-a 
bexp{-T x < a 

x>a 
and   f2(x) = 

-exp 
x-a 

x < a 

x>a 

Now each of these has an indefinite integral, namely 

(5) 

(6) 

(7) 

*      Since 1 -U has precisely the same distribution as U, in practice, we use X = b(-lnU)i'c, which saves a subtraction and is therefore 

slightly more efficient, 
t      The composition functions /, must be defined on disjoint intervals, so that if /}<*) > 0, then //*) = 0 for all x whenever j * i. That is, 

there is no overlap between the composition functions. 



Fi(x) = \ 

exp 
x-a 

0 

x < a 

x>a 

and   F2(x): 

1 -exp 

x < a 

x>a 

that is invertible. Since px~ p2 = 1/2, we can select Ux ~ U(0,1) and set 

._Jl    ift/! > 1/2 
'     [2   iff/, <l/2  " 

Independently, we select U2 ~ U(0,1) and then, using the inversion technique of section 3.1, 

ra + b\nU2   if*' = l 
X = - 

a-b\nU2   iff = 2 

(8) 

(9) 

(10) 

3.3       Convolution 

If X and Y are independent random variables from known density functions fx(x) and fy{y), then we can generate 
new distributions by forming various algebraic combinations of X and Y. Here, we show how this can be done via 
summation, multiplication, and division. We only treat the case when the distributions are independent—in which 
case, the joint probability density function is simply f(x, y) = fx(x)fY(y). First consider summation. The cumula- 
tive distribution is given by 

FX+Y(U)= jj f(x,y)dxdy (11) 
x+y<u 

f  u-x 

\      \   f(x,y)dy dx (12) 

y —oo ^=—00 

I 

The density is obtained by differentiating with respect to u, and this gives us the convolution formula for the sum 
oo 

/X+K(") = J /(*, u - x)dx , (13) 

where we used Leibniz's rule (see Glossary) to carry out the differentiation (first on x and then on y). Notice that, if 
the random variables are nonnegative, then the lower limit of integration can be replaced with zero, since fx(x) = 0 
for all x < 0, and the upper limit can be replaced with u, since fY(u - x) = 0 for x > u. 

Let us apply this formula to the sum of two uniform random variables on [0,1]. We have 

fx+r(u) = J f(x)f(u -x)dx . 
—oo 

Since f(x) = 1 when 0 < x < 1, and is zero otherwise, we have 

1 u r 

fx+r(u)= \f{u-x)dx=   \f(t)dt = \U "" 
J J 2-u    1< u<2 

(14) 

(15) 
U-I 

and we recognize this as a triangular distribution (see section 5.1.24). As another example, consider the sum of two 
independent exponential random variables with location a = 0 and scale b. The density function for the sum is 

Z Z 

fx+r(z) = J fxMfyiz - x) dx = J I e-x/b I e^-*)/b dx=±ze zlb (16) 

Using mathematical induction, it is straightforward to generalize to the case of n independent exponential random 
variates: 



xn-l e-xlb 

/X.4-+X.W = (n_l)lbn = S3™113(°' *' ">• (17) 

where we recognized this density as the gamma density for location parameter a = 0, scale parameter b, and shape 
parameter c = n (see section 5.1.11). 
Thus, the convolution technique for summation applies to a situation where the probability distribution may be writ- 
ten as a sum of other random variates, each of which can be generated directly. The algorithm is as follows. 

(1) GenerateXt~FJlQJ)fori = 1,2,•••,n. 
(2) SetX = X1+X2 + --- + X„. 

To pursue this a bit further, we can derive a result that will be useful later. Consider, then, the Erlang distribution; it 
is a special case of the gamma distribution when the shape parameter c is an integer. From the aforementioned dis- 
cussion, we see that this is the sum of c independent exponential random variables (see section 5.1.8), so that 

X = -b\o.Xl tlnXc=-feln(X1-"Xc). (18) 

This shows that if we have c HD exponential variates, then the Erlang distribution can be generated via 

X = -b\nfiXi. (19) 
i=l 

Random variates may be combined in ways other than summation. Consider the product of X and Y. The cumula- 
tive distribution is 

FXY(")= j\f(x,y)dxdy (20) 

oo /   ulx N 

= j\  j f(x,y)dy 
-oo vy=-oo j 

Once again, the density is obtained by differentiating with respect to «: 

dx . (21) 

(22) 
1 

/xr(")= j f(x,u/x)-dx. 
-co 

Let us apply this to the product of two uniform densities. We have 

/xr(")= jf(x)f(u/x)-dx. (23) 
-oo 

On the unit interval, f(x) is zero when x> 1 and f(u/x) is zero when x < u. Therefore, 

i . 

(24) 
l 

x 
u 

This shows that the log distribution can be generated as the product of two HD uniform variates (see section 5.1.13). 

Finally, let's consider the ratio of two variates: 

FY/xM= jjf(x,y)dxdy (25) 
ylx&u 

oo f   ux \ 

= J     J   f(x,y)dy 
-oo \j>=-oo 

dx. (26) 

Differentiating this to get the density, 



/y/x(")= J f(x,ux)\x\dx. 
—OO 

As an example, let us apply this to the ratio of two normal variates with mean 0 and variance 1. We have 
OO OO 

fr/x(u) = j f{x)f(ux) \x\ dx = — J e-
x2'2e-u2x2'2 \x\ dx , 

and we find that 

frixiu) = - L-<1+«2>*2'2 xdx = —i-j- . 

(27) 

(28) 

(29) 

This is recognized as a Cauchy distribution (see section 5.1.3). 

3.4      Acceptance-Rejection 
Whereas the previous techniques are direct methods, this is an indirect technique for generating the desired 
distribution. It is a more general method, which can be used when more direct methods fail; however, it is generally 
not as efficient as direct methods. Its basic virtue is that it will always work—even for cases where there is no 
explicit formula for the density function (as long as there is some way of evaluating the density at any point in its 
domain). The technique is best understood geometrically. Consider an arbitrary probability density function, f(x), 
shown in Figure 2. The motivation behind this method is the simple observation that, if we have some way of 
generating uniformly distributed points in two dimensions under the curve of f(x), then the frequency of occurrence 
of the x values will have the desired distribution. 

Figure 2. Probability Density Generated From Uniform Areal Density. 
A simple way to do this is as follows. 

(1) Select X~U(xmü),xmax). 
(2) Independently select Y ~ U(ymia, ymax). 
(3) Accept X if and only if Y < f(X). 

This illustrates the idea, and it will work, but it is inefficient due to the fact that there may be many points that are 
enclosed by the bounding rectangle that lie above the function. So this can be made more efficient by first finding a 
function / that majorizes f{x), in the sense that f{x) > f(x) for all x in the domain, and, at the same time, the inte- 
gral of / is invertible. Thus, let 

ä "max 

F(x)= J f(x) dx  and define   Amax =      f(x) dx . 
^min -*min 

Then the more efficient algorithm is as follows. 

(30) 



(1) Select A -UiO.A^). 
(2) Compute X = P'1 (A). 
(3) Independently select Y ~ U(0, /(X)). 
(4) Accept X if and only if Y < f(X). 

The acceptance-rejection technique can be illustrated with the following example. Let f(x) = 10,296 *5(1 - xf. It 
would be very difficult to use the inverse transform method upon this function, since it would involve finding the 
roots of a 13th degree polynomial. From calculus, we find that f(x) has a maximum value of 2.97187 at x = 5/12. 
Therefore, the function /(x) = 2.97187 majorizes /(*). So, with Amax = 2.97187, F(*) = 2.97187*, and 
ynax = 2- 97187, the algorithm is as follows. 

(1) Select A ~t/(0,2.97187). 
(2) Compute X = Al2.97187. 
(3) Independently select Y ~ 1/(0,2.97187). 
(4) Accept X if and only if Y < f(X). 

3.5 Sampling and Data-Driven Techniques 
One very simple technique for generating distributions is to sample from a given set of data. The simplest technique 
is to sample with replacement, which effectively treats the data points as independent. The generated distribution is 
a synthetic data set in which some fraction of the original data is duplicated. The bootstrap method (Diaconis and 
Efron 1983) uses this technique to generate bounds on statistical measures for which analytical formulas are not 
known. As such, it can be considered as a Monte Carlo simulation (see section 3.7) We can also sample without 
replacement, which effectively treats the data as dependent. A simple way of doing this is to first perform a random 
shuffle of the data and then to return the data in sequential order. Both of these sampling techniques are discussed in 
section 5.3.3. 
Sampling empirical data works well as far as it goes. It is simple and fast, but it is unable to go beyond the data 
points to generate new points. A classic example that illustrates its limitation is the distribution of darts thrown at a 
dart board. If a bull's eye is not contained in the data, it will never be generated with sampling. The standard way to 
handle mis is to first fit a known density function to the data and men draw samples from it. The question arises as 
to whether it is possible to make use of the data directly without having to fit a distribution beforehand, and yet 
return new values. Fortunately, there is a technique for doing this. It goes by the name of "data-based simulation" 
or, the name preferred here,"stochastic interpolation." This is a more sophisticated technique that will generate new 
data points, which have the same statistical properties as the original data at a local level, but without having to pay 
the price of fitting a distribution beforehand. The underlying theory is discussed in (Taylor and Thompson 1986; 
Thompson 1989; Bodt and Taylor 1982) and is presented in section 5.3.4. 

3.6 Techniques Based on Number Theory 
Number theory has been used to generate random bits of 0 and 1 in a very efficient manner and also to produce 
quasi-random sequences. The latter are sequences of points that take on the appearance of randomness while, at the 
same time, possessing other desirable properties. Two techniques are included in this report. 

1. Primitive Polynomials Modulo Two 
These are useful for generating random bits of l's and 0's that cycle through all possible combinations (exclud- 
ing all zeros) before repeating. This is discussed in section 5.5.1. 

2. Prime Number Theory 
This has been exploited to produce sequences of quasi-random numbers that are self-avoiding. This is dis- 
cussed in section 5.5.2. 

3.7 Monte Carlo Simulation 
Monte Carlo simulation is a very powerful technique that can be used when the underlying probability density is 
unknown, or does not come from a known function, but we have a model or method that can be used to simulate the 
desired distribution. Unlike the other techniques discussed so far, there is not a direct implementation of this method 
in section 5, due to its generality. Instead, we use this opportunity to illustrate this technique. For this purpose, we 
use an example that occurs in fragment penetration of plate targets. 



Consider a cube of side length a, material density p, and mass m = pa3. Its geometry is such that one, two, or, at 
most, three sides will be visible from any direction. Imagine the cube situated at the origin of a cartesian coordinate 
system with its face surface normals oriented along each of the coordinate axes. Then the presented area of the cube 
can be parametrized by the polar angle 0 and the azimuthal angle <f>. Defining a dimensionless shape factor y by 

Ap = rimlpf12, (31) 

where Ap is the presented area, we find that the dimensionless shape factor is 

y(0, <f) = sin 0 cos 0 + sin 0 sin <j> + cos 9. (32) 

It is sufficient to let 0 e [0, Till) and <p e [0, xl2) in order for y to take on all possible values. Once we have this 
parametrization, it is a simple matter to directly simulate the shape factor according to the following algorithm. 

(1) Generate {0, #) ~ uniformSpherical (0, nil, 0, nil). 
(2) Return y = sin 0 cos 0 + sin 6 sin <f> + cos 0. 

Figure 3 shows a typical simulation of the probability density /(/). 
Midpt Freq 
1.008 0 
1.025 1 
1.041 0 
1.057 2 
1.074 1 
1.090 2 
1.106 5 
1.123 2 
1.139 5 
1.155 6 
1.172 5 
1.188 11 
1.205 14 
1.221 12 
1.237 8 
1.254 10 
1.270 11 
1.286 15 
1.303 13 
1.319 21 
1.335 19 
1.352 19 
1.368 26 
1.384 34 
1.401 25 
1.417 34 
1.434 40 
1.450 39 
1.466 42 
1.483 43 
1.499 33 
1.515 41 
1.532 32 
1.548 29 
1.564 37 
1.581 34 
1.597 39 
1.614 43 
1.630 29 
1.646 45 
1.663 43 
1.679 41 
1.695 30 
1.712 35 
1.728 24 
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Figure 3. Shape Factor Probability Density of a Randomly Oriented Cube via Monte Carlo Simulation. 
Incidently, we find that 

Output = y e [1,V3), 

Mean = 3/2, and 

Variance = 4/x - 5/4. 



3.8      Correlated Bivariate Distributions 
If we need to generate bivariate distributions and the variates are independent, then we simply generate the distribu- 
tion for each dimension separately. However, there may be known correlations between the variates. Here, we show 
how to generate correlated bivariate distributions. 
To generate correlated random variates in two dimensions, the basic idea is that we first generate independent vari- 
ates and then perform a rotation of the coordinate system to bring about the desired correlation, as shown in Figure 
4. 

(x,y) 

,'0 

Figure 4. Coordinate Rotation to Induce Correlations. 

The transformation between the two coordinate systems is given by 

x' = xcos0 + ysin0    and    / = -;csin0 + ycos0. 

Setting the correlation coefficient p = cos 0 so that 

x' = px+^l-p2y 

induces the desired correlation. To check this, 

corr(;t, *') = p corr(x, x) + ^l-p2con(x, y) = p (1) + il-p2®) = P, 

since corr(*, x) = 1 and corr(*, y) = 0. 

Here are some special cases: 

0 = 0      p = \      x' = x 
0 = 7tl2   p = 0      x' is independent of x   . 
0 = K      p = -l   x' = -x 

(33) 

(34) 

(35) 

(36) 

Thus, the algorithm for generating correlated random variables (x, x'\ with correlation coefficient p, is as follows. 

(1) Independently generate X and Y (from the same distribution). 

(2) SetX' = pX + Vl-P2r- 
(3) Return the correlated pair (X, X'). 

3.9      Truncated Distributions 
Consider a probability density function f(x) defined on some interval and suppose that we want to truncate the dis- 
tribution to the subinterval [a, b]. This can be accomplished by defining a truncated density: 

/(*)- 
a<x<b 

F(b)-F(a) 

0 otherwise 
(37) 



which has corresponding truncated distribution 

f"WH 

0 x<a 
F(x)-F(a) 

FW^T) a*x*b ■ (38) 

1 x>b 

An algorithm for generating random variates having distribution function F is as follows. 

(1) Generate U ~ U(0,1). 
(2) SetY = F(a) + [F(b)-F(a)]U. 
(3) Return X = F~l(Y). 

This method works well with the inverse-transform method. However, if an explicit formula for the function F is 
not available for forming the truncated distribution given in equation (38), or if we do not have an explicit formula 
for F~\ then a less efficient but nevertheless correct method of producing the truncated distribution is the following 
algorithm. 

(1) Generate a candidate X from the distribution F. 
(2) If a < X < b, then accept X; otherwise, go back to step 1. 

This algorithm essentially throws away variates that lie outside the domain of interest. 

4. PARAMETER ESTIMATION 
The distributions presented in section 5 have parameters that are either known or have to be estimated from data. In 
the case of continuous distributions, these may include the location parameter, a; the scale parameter, b; and/or the 
shape parameter, c. In some cases, we need to specify the range of the random variate, xmin and xmax. In the case of 
the discrete distributions, we may need to specify the probability of occurrence, p, and the number of trials, n. Here, 
we show how these parameters may be estimated from data and present two techniques for doing this. 

4.1 Linear Regression (Least-Squares Estimate) 
Sometimes, it is possible to linearize the cumulative distribution function by transformation and then to perform a 
multiple regression to determine the values of the parameters. It can best be explained with an example. Consider 
the Weibull distribution with location a = 0: 

F(x) = l-exp[-(x/b)c]. (39) 

We first sort the data xt in accending order: 

xi < x2 < x3 < ■ ■ ■ < xN . (40) 

The corresponding cumulative probability is F(*,) = Ft = UN. Rearranging eq. (39) so that the parameters appear 
linearly, we have 

ln[-ln(l-F,)] = clnA:I-clnfc. (41) 

This shows that if we regress the left-hand side of this equation against the logarithms of the data, then we should 
get a straight line.* The least-squares fit will give the parameter c as the slope of the line and the quantity -c In b as 
the intercept, from which we easily determine b and c. 

4.2 Maximum Likelihood Estimation 
In this method, we assume that the given data came from some underlying distribution that contains a parameter ß 
whose value is unknown. The probability of getting the observed data with the given distribution is the product of 
the individual densities: 

Uß) = fß{X{)fp{X2) ■ ■ ■ fß(XN). (42) 

We should note that linearizing the cumulative distribution will also transform the error term. Normally distributed errors will be trans- 
formed into something other than a normal distribution. However, the error distribution is rarely known, and assuming it is Gaussian to 
begin with is usually no more than an act of faith. See the chapter "Modeling of Data" in Press et al. (1992) for a discussion of this point. 
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The value of ß that maximizes L(ß) is the best estimate in the sense of maximizing the probability. In practice, it is 
easier to deal with the logarithm of the likelihood function (which has the same location as the likelihood function 
itself). 
As an example, consider the lognormal distribution. The density function is 

/w»W = 

1 (\RX-flf 

2CT
2 

0 

x>0 
vlnox 

otherwise 

(43) 

The log-likelihood function is 

and, in this case, 

This is a maximuum when both 

and we find 

N N 

In L(fi, o2) = In n /^W = £ ln /*o*(*i) 
i=i 1=1 

lnLCu,c72) = £ 
;=i 

ln(V2Jrö2*,) + Qnxj-fi) 
2<r2 

3lnZ-Cu,<72)    n ,     din L(/u, a2) 
= 0     and      zr-z = 0 

*M da2 

1   N 1 /i = — £lnx,-     and     CT
2
 = — Efln *,-/*) 

N ,=1 N ,=i 

(44) 

(45) 

(46) 

(47) 

Thus, maximum likelihood parameter estimation leads to a very simple procedure in this case. First, take the loga- 
rithms of all the data points. Then, fi is the sample mean, and a2 is the sample variance. 

5. PROBABILITY DISTRIBUTION FUNCTIONS 
In this section, we present the random number distributions in a form intended to be most useful to the actual prac- 
tioner of Monte Carlo simulations. The distributions are divided into five subsections as follows. 

Continuous Distributions 
There are 27 continuous distributions. For the most part, they make use of three parameters: a location parame- 
ter, a; a scale parameter, b; and a shape parameter, c. There are a few exceptions to this notation. In the case of 
the normal distribution, for instance, it is customary to use fi for the location parameter and a for the scale 
parameter. In the case of the beta distribution, there are two shape parameters and these are denoted by v and w. 
Also, in some cases, it is more convenient for the user to select the interval via *min and *max than the location 
and scale. The location parameter merely shifts the position of the distribution on the x-axis without affecting 
the shape, and the scale parameter merely compresses or expands the distribution, also without affecting the 
shape. The shape parameter may have a small effect on the overall appearance, such as in the Weibull distribu- 
tion, or it may have a profound effect, as in the beta distribution. 

Discrete Distributions 
There are nine discrete distributions. For the most part, they make use of the probability of an event, p, and the 
number of trials, n. 

Empirical and Data-Driven Distributions 
There are four empirical distributions. 

Bivariate Distributions 
There are five bivariate distributions. 

Distributions Generated from Number Theory 
There are two number-theoretic distributions. 

11 



5.1 Continuous Distributions 

To aid in selecting an appropriate distribution, we have summarized some characteristics of the continuous distribu- 
tions in Table 1. The subsections that follow describe each distribution in more detail. 

Table 1. Properties for Selecting the Appropriate Continuous Distribution 

Distribution Name Parameters Symmetric About the Mode 

Arcsin •*min and -Xmax yes 

Beta •*min> *max> and shape v and w only when v and w are equal 

Cauchy (Lorentz) location a and scale b yes 

Chi-Square shape v (degrees of freedom) no 

Cosine -*min and JCmax yes 

Double Log •*min 3D" -^max yes 

Erlang scale b and shape c no 

Exponential location a and scale b no 

Extreme Value location a and scale b no 

F Ratio shape v and w (degrees of freedom) no 

Gamma location a, scale b, and shape c no 

Laplace (Double Exponential) location a and scale b yes 

Logarithmic ■*min and ^max no 

Logistic location a and scale b yes 

Lognormal location a, scale ft, and shape a no 

Normal (Gaussian) location /i and scale a yes 

Parabolic ■*min äTw -*max yes 

Pareto shape c no 

Pearson's Type 5 (Inverted Gamma) scale b and shape c no 

Pearson's Type 6 scale b and shape v and w no 

Power shape c no 

Rayleigh location a and scale b no 

Student's t shape v (degrees of freedom) yes 

Triangular *min> *max> ^d Shape C only when c = (x^ + x^/2 

Uniform ■*min and ■''max yes 

User-Specified ■*min> ^max <"l" ^min» ^max depends upon the function 

Weibull location a, scale b, and shape c no 
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5.1.1    Arcsine 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

/<*) = 

F(x) = 

1 
0<*<1 

0 otherwise 

0 
„-1 

*<0 

sin_1(V*)   0 < x < 1 
1 x>\ 

*min, minimum value of random variable; xmm, maximum value of random variable 

X ^ L-^min» ■'■max/ 

X« 

(*ir 

*min and *max 

*min ""■ Xmax)l£ 

Notes: 

Examples of the probability 
respectively. 

v^min "■" Xmax)l£ 

V-*max — xxam) '° 

Sin (r(/T/2) = Xj/(Xmax — Xmj„) — ^mm'v-^max — -^min^» 

where the xt are arranged in ascending order, Ft = i/N, and i = 1,2, • • •, N 

(1) Generate U ~ 1/(0,1) 
(2) Return X = xmin + (*max - xmm) sin2{Unll) 

double arcsine( double xMin, double xMax ) 
{ 

assert( xMin < xMax ); 

double q = sin( M_PI_2 * uniform( 0., 1. ) ); 
return xMin + ( xMax - xMin ) * q * q; 

} 

This is a special case of the beta distribution (when v = w = 1/2). 

density function and the cumulative distribution function are shown in Figures 5 and 6, 

Figure 5. Arcsine Density Function. Figure 6. Arcsine Distribution Function. 
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5.1.2    Beta 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

Notes: 

Examples of probability 
respectively. 

/(*) = 

„v-l 
(1-Jf)' 

w-1 

B(v, w) 

0 

0<*<1 

otherwise 

where B(v, w) is the beta function, defined by B(v, w) = f fv-1(l - t)w~l dt 
o 

I 0 otherwise 
X 

where Bx(v, w) is the incomplete beta function, defined by B^v, w) =    r^'Cl - t)w~xdt 
o 

;cmin, minimum value of random variable; xmax, maximum value of random variable; 
v and w, positive shape parameters 

•* ^ L-*imin> -^max/ 

(v - l)/(v + w - 2) for v > 1 and w > 1 on the interval [0,1] 

v/(v + w) on the interval [0,1] 

vw/[(v + w)2(l + v + w)] on the interval [0,1] 

(1) Generate two IID gamma variates, Yx ~ gamma (1, v) and Y2 ~ gamma (1, w) 

^min + (^max-^min)^l/(i'l+I'2)      if V > W (2) Return X = 
xmax-(xmax-xmüJY2/(Yl+Y2)   ifv<w 

double beta( double v, double w, double xMin, double xMax ) 
{ 

if ( v < w ) return xMax - ( xMax - xMin ) * beta( w, v ); 
double yl = gamma( 0., 1., v ); 
double y2 = gamma( 0., 1., w ); 
return xMin + ( xMax - xMin ) * yl / ( yl + y2 ); 

} 

(1) X ~ Beta(v, w) if and only if 1 - X ~ Beta(w, v). 
(2) When v = w = 1/2, this reduces to the arcsine distribution. 
(3) When v = w = 1, this reduces to the uniform distribution. 

density functions and cumulative distribution functions are shown in Figures 7 and 8, 

0.75- 

0.5- 

0.25- 

Figure 7. Beta Density Functions. Figure 8. Beta Distribution Functions. 
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5.1.3    Cauchy (Lorentz) 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

Kx)=Tt i + 
\2' x-a 

~b~) 
-oo < X < oo 

1     1      .Ax-a , 
F(x) = - + — tan     —— I   -oo < x < oo 

in \   b 

a, location parameter; 
b, scale parameter is the half-width at half-maximum 

x e (-oo, oo) 

a 

a 

a 

Does not exist 

tan[x(Fi -1/2)] = Xi/b-a/b 

(1) Generate U ~ U(-l/2,1/2) 
(2) Return X = a + b tan (TCU) 

double cauchy(  double a,  double b  ) 
t 

assert< b > 0. ); 
return a + b * tan( M_PI * uniform( -0.5, 0.5 ) )j 

1 

Examples of probability density functions and cumulative distribution functions are shown in Figures 9 and 10, 
respectively. 

Figure 9. Cauchy Density Functions. Figure 10. Cauchy Distribution Functions. 
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5.1.4    Chi-Square 

Density Function: 

Distribution Function: 

fix) 

xvii-ie-xa 
if x>0 

2"/2I>/2) 

0 otherwise 

where T(z) is the gamma function, defined by T(z) = [ tz~l e~l dt 

Fix)-- 
1 x 1       jtva-ie-,ndt   ifx>0 

2v,2T(v/2) 

otherwise 

Input: Shape parameter v > 1 is the number of degrees of free 

Output: X  G (0, oo) 

Mode: v-2forv>2 

Mean: V 

Variance: 2v 

Algorithm: Return X ~ gamma (0,2, v/2) 

Source Code: double  chiSquare(   int df   ) 
[ 

assert(   df  >=  1   ); 
return gamma (   0.,   2 . ,   0.5   *  double (   df   )   ) ; 

} 

Notes: (1) The chi-square distribution with v degrees of freedom is equal to the gamma 
distribution with a scale parameter of 2 and a shape parameter of v/2. 

(2) Let Xi ~ N(0,1) be IID normal variates for i = 1, • • •, v. Then X2 = 2 Xf 
2 '=1 

is a j distribution with v degrees of freedom. 

Examples of probability density functions and cumulative distribution functions are shown in Figures 11 and 12, 
respectively. 

0.75- 

0.5- 

0.25- 

0- 

Figure 11. Chi-Square Density Functions. Figure 12. Chi-Square Distribution Functions. 
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5.1.5    Cosine 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

/(*) = 
2b 

cos 
rX-a^ 
I   b   ) 

F(x) = 1 + sin 
x-a 

'•rain — ■* — ■'"max 

otherwise 

X < -*min 

•'•min — X — Xm!oi 

X > X, max 

The probability density 
tively. 

xmin, minimum value of random variable; xmax, maximum value of random variable; 
location parameter a = (xmin + xmax)/2; scale parameter b = (xmax - xmin)lK 

X £ L*min> -*max/ 

\Xmm """ Xmax)/£ 

(.■'•min "'" ■"•max/'^ 

l-^min "■" Xmwi)IZ 

(^max-^min)2(^2-8)/4^2 

sin-1 (2F,- 1) = xjb-alb, 
where the xt are arranged in ascending order, F, = i/iV, and i = 1,2, •••, W 

(1) Generate U ~U(-l,l) 
(2) Return X = a + b sin-1 U 

double cosine(  double xMin,  double xMax  ) 
{ 

assert( xMin < xMax ); 
double a = 0.5 * ( xMin + xMax );   // location parameter 
double b = ( xMax - xMin ) / M_PI;   // scale parameter 
return a + b * asin( uniform( -1., 1. ) ); 

} 

function and the cumulative distribution function are shown in Figures 13 and 14, respec- 

Figure 13. Cosine Density Function. Figure 14. Cosine Distribution Function. 
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5.1.6    Double Log 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

/(*) = 

1 ,  (\x-a\ 
~2bln ■'•min — X — Xmax 

otherwise 

F(x) = 

1 (\x-aV 
2 I   2*   , 
1    f\x-a\ 
2+l   2b 

1-ln 

1-ln 

\x-a\ 
b 

\x — a\ 

<x<a 

a < x < xn 

xmin, minimum value of random variable; xmax, maximum value of random variable; 
location parameter a = (xmin + xmax)/2; scale parameter b - (xmdX - *min)/2 

X 6 L-^min> Xmax) 

a (Note that, strictly speaking, f(a) does not exist since lim f(x) = oo.) 
x-*a 

a 

a 

(*, max     -^min ^mi„)2/36 

Based on composition and convolution formula for the product of two uniform densities: 
(1) Generate two IID uniform variates, Ut ~ U(0,1), i = 1,2 
(2) Generate a Bernoulli variate, U ~ Bernoulli (0.5) 
(3) If U = 1,return X = a + bUiUj, otherwise,returnX = a-bU{U2 

double doubleLog(   double  xMin,   double xMax   ) 
[ 

assert( xMin < xMax ); 
double a = 0.5 * ( xMin + xMax );   // location parameter 
double b = 0.5 * ( xMax - xMin );   // scale parameter 

if ( bernoulli( 0.5 ) ) return a + b * uniform() * uniform(); 
else return a-b * uniform() * uniform(); 

} 

The probability density function and the cumulative distribution function are shown in Figures 15 and 16, respec- 
tively. 

Figure 15. Double Log Density Function. Figure 16. Double Log Distribution Function. 
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5.1.7    Erlang 

Density Function: 

Distribution Function: 

Input 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

f {xlbT e 

/(*) = 

F(x) = 

,c-l „-xlb 
X>0 

b(c-l)l 

0 otherwise 

l-e -E^  *ao 
i-0     » 

0 otherwise 

Notes: 

Scale parameter b > 0; shape parameter c, a positive integer 

.* e[0,oo) 

b(c-l) 

be 

b2c 

This algorithm is based on the convolution formula. 
(1) Generate c IID uniform variates, Ut ~ U(0,1) 

(2) Return X = - b £ lnf/,- = - b\nj\ Ut 

double erlang(  double b,  int c  ) 
C 

assert(  b > 0.   ss c >= 1  ) ; 

double prod =  1.0; 
for   (   int i  =  0;   i  < c;   i++   )   prod  *= uniform(   0.,   1.   ); 
return -b * log(  prod  ); 

} 

The Erlang random variate is the sum of c exponentially-distributed random variates, 
each with mean b. It reduces to the exponential distribution when c = 1. 

Examples of probability density functions and cumulative distribution functions are shown in Figures 17 and 18, 
respectively. 

1-     F(x) 

Figure 17. Erlang Density Functions. Figure 18. Erlang Distribution Functions. 
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5.1.8    Exponential 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

/(*) = 

F(x) = ■ 

(l.e-ix-ayb   x>a 

b 

0 otherwise 

l-e-ir*Yb   x>a 

0 otherwise 

Location parameter a, any real number; scale parameter b > 0 

x e [a, oo) 

a 

a + bln2 

a + b 

b2 

-ln(l-Fi) = Xi/b-a/b, 
where the xt are arranged in ascending order, F, = UN, and i = l,2,---,N 

b = X, the mean value of the random variates 

(1) Generate U ~ J7(0,1) 
(2) ReturnX = a-Mn£/ 

double exponential(   double a,   double b   ) 
{ 

assert(  b > 0.   ); 
return a  -  b *  log(   uniform(   0.,   1.   )   ); 

} 

Examples of probability density functions and cumulative distribution functions are shown in Figures 19 and 20, 
respectively. 

1- 

0.75- 

0.5- 

0.25- 

Figure 19. Exponential Density Functions. Figure 20. Exponential Distribution Functions. 
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5.1.9    Extreme Value 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

/(*) = - eix-a)lb exp[-e(x_fl)/6]   -oo < x < oo 
b 

F(x) = l-exp[-e(x~a)/b]   -oo<;t<oo 

Location parameter a, any real number; scale parameter b > 0 

x e (—00,00) 

a 

a + b\n]n2 

a-by where 7 = 0.57721 is Euler's constant 

&V/6 

]n[-\n(l-Fi)] = Xi/b-a/b, 
where the xt are arranged in ascending order, Ft = HN,andi = l,2,---,N 

(1) Generate U ~ U(0,1) 
(2) Return X = a + fein(-lnf/) 

double extremeValue(  double a,  double b  ) 
{ 

assert( b > 0. ); 
return a + b * log( -log( uniform( 0., 1. ) ) ); 

} 

Notes: This is the distribution of the smallest extreme.  The distribution of the largest 
extreme may be obtained from this distribution by reversing the sign of X relative to 
the location parameter a, i.e., X =* -(X - a). 

Examples of probability density functions and cumulative distribution functions are shown in Figures 21 and 22, 
respectively. 

0.8- f(x) a = 0 

0.6- /    \b = l/2 

0.4- /  b = 1\ 

0,2- 
b=2 

0- 
\           1 1           1           1 1           1 

1- F(x) 

0.75- 

0.5- b=2^ 

0.25- 
^b=\/ /b = V2 

0- a=0 

1          1 \          1 1           1 
-3 -1 0 1 

Figure 21. Extreme Value Density Functions. Figure 22. Extreme Value Distribution Functions. 
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5.1.10  F Ratio 

Density Function: 

Distribution Function: 

Input 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

/(*) = 

H(v + w)/2]   {vlwyax(v-1)n 

x>0 
r(v/2)r(w/2) (i+xv/wYv+w'»2 

0 otherwise 

where F(z) is the gamma function, defined by T(z) = \tzle'dt 
o 

No closed form, in general. 

Shape parameters v and w are positive integers (degrees of freedom) 

x e [0, oo) 

w(v-2) 
— — for v > 2 
v(w + 2) 

w/(w - 2) for w > 2 

f or w > 4 
2w2(v + w-2) 
v(w-2)2(w-4) 

(1) Generate V ~ j2(v) and W ~ %2(w) 

(2) Return X 
v/v 
W/w 

double f Ratio ( int v, int w ) 
[ 

assert( v >= 1 &s w >= 1 ); 
return ( chiSquare( v ) / v ) / ( chiSquare( w ) / w ); 

} 

Examples of the probability density function and the cumulative distribution function are shown in Figures 23 and 
24, respectively. 

0.6- 

0.4- 

0.2- 

1- 

0.75- 

0.5- 

0.25- 

0       12       3       4       5       6       7 

Figure 23. F-Ratio Density Function. Figure 24. F-Ratio Distribution Function. 
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5.1.11   Gamma 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

/(*) = 
T(c) 

0 

x > a 

otherwise 
oo 

where T(z) is the gamma function, defined by T(z) = I tz~xe~x dt 
o 

If n is an integer, T(ri) = (n -1)! 

No closed form, in general. However, if c is a positive integer, then 

0 otherwise 
F(x) = 

Location parameter a; scale parameter b > 0; shape parameter c> 0 

* e [a,oo) 

ja + &(c-l)   ifc>l 
1 a if c < 1 

a + fcc 

b2c 

There are three algorithms (Law and Kelton 1991), depending upon the value of the 
shape parameter c. 

Case 1: c < 1 
Let ß = 1 + de. 
(1) Generate Ux ~ U(0,1) and set P = ßU1. 

If P > 1, go to step 3; otherwise, go to step 2. 
(2) Setr = Pl/c and generate U2~U(0,\). 

If U2 ^ e~r, return X = Y; otherwise, go back to step 1. 
(3) Set Y = - In [(ß - P)/c] and generate U2 ~ U(0,1). 

If £/2 < Yc~\ return X = Y; otherwise, go back to step 1. 

Case 2: c = l 
Return X ~ exponential (a, b). 

Case 3: c > 1 
Let a = 1/V2c-1, ß = c-ln4, q = c+l/a, 9 = 4.5, and d = 1 +lnö. 
(1) Generate two IED uniform variates, Uy ~ 17(0,1) and U2 ~ U(0,1). 
(2) Set V = a In [t/,/(l - C/,)], F = cev, Z = £/ft/2, andW = ß + qV-Y. 
(3) If W + d - 6Z > 0, return X = Y; otherwise, proceed to step 4. 
(4) If W > In Z, return X = F; otherwise, go back to step 1. 
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Source Code: 

1.   )   )  return a + b * y; 

double gamma(  double a,   double b,   double c   ) 
I 

assert(  b  >  0.   ss c   >  0.   ); 

const double A = 1. / sqrt( 2. * c - 1. ); 
const double B = c - log( 4. ); 
const double Q = c + 1. /A; 
const double T = 4.5; 
const double D = 1. + log( T ); 
const double C = 1. + c / M_E; 

if ( c < 1. ) { 
while ( true ) { 

double p = C * uniform( 0., 1. ); 
if ( P > 1. ) { 

double y = -log( ( C - p ) / c ); 
if ( uniform( 0., 1. ) <= pow( y, c 

} 
else { 

double y = pow( p, 1. / c ); 
if ( uniform( 0., 1. ) <= exp( -y ) ) return a + b * y; 

} 
] 

} 
else if ( c == 1.0 ) return exponential( a, b ); 
else { 

while ( true ) [ 
double pi = uniform(   0.,   1.   ); 
double p2  = uniform)   0.,   1.   ); 
double v = A *  log(  pi /  (   1.   - pi   )   ); 
double y = c *  exp(  v  ); 
double  z  = pi  *  pi  * p2; 
double w=B+Q*v-y; 
if(w+D-T*z>=0.   ||  w >= log(   z   )   )  return a + b * y; 

} 
} 

} 

Notes: (1) When c = 1, the gamma distribution becomes the exponential distribution. 
(2) When c is an integer, the gamma distribution becomes the erlang distribution. 
(3) When c = v/2 and b = 2, the gamma distribution becomes the chi-square 

distribution with v degrees of freedom. 

Examples of probability density functions and cumulative distribution functions are shown in Figures 25 and 26, 
respectively. 

0- 

i/OO a=0 
b = \ 

1 
0 

1 
1 

1 
2 

1 
3 

1 
4 

1 
5 

1 
6 

1 
7 

0.75- 

0.5- 

0.25 

Figure 25. Gamma Density Functions. Figure 26. Gamma Distribution Functions. 
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5.1.12  Laplace (Double Exponential) 

Density Function: 

Distribution Function: 

Input 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

fM=2texp{- b 
\x-a\ 

-oo < x < oo 

F(x) = 

e(x-a)lb 

1 

x<a 

2 

Location parameter a, any real number; scale parameter b > 0 

x e (-oo, oo) 

a 

a 

a 

lb1 

| In (2F,) = Xilb -alb 0 < F ,■ < 1/2 
{ - In [2(1 - F,)] = xtlb - alb    1/2 < Ft < 1 
where the *,• are arranged in ascending order, F, = UN, and i = 1,2, • • •, N 

(1) Generate two IID random variates, U1 ~ U(0,1) and U2 ~ U(0,1) 
'a + blnU2   iff/i>l/2 

(2) Return X = - 
a-b\aU2   if£/i<l/2 

double laplace( double a, double b ) 
f 

assert( b > 0. ); 

// composition method 

if ( bernoulli( 0.5 ) ) return a + b * log( uni£orm< 0., 1. ) ); 
else return a - b * log( uniform« 0., 1. ) ); 

Examples of probability density functions and cumulative distribution functions are shown in Figures 27 and 28, 
respectively. 

1- /(*) 
A   b = l/2 

a=0 

0.75- 

0.5- 

0.25- J^^\j>=1 
b = 2 

0- 
1                 1 1                I 1 

-1.5 1.5 

Figure 27. Laplace Density Functions. Figure 28. Laplace Distribution Functions. 

25 



5.1.13  Logarithmic 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

/(*) = 

1    (x-a 
X    •     <   X <   1" 

F(x) = 
x-a 

0 otherwise 

0 

1-ln 

1 

x — a 

x < x„ 

x ■ < x < x Amin — •* — Amax 

*> X„ 

*min, minimum value of random variable; *max, maximum value of random variable; 
location parameter a = *min; scale parameter b = xm3x - xmiTI 

* ^ L-*min> -^max/ 

■'■min 

■*min **" ^ v^max — ^min/ 

7 2 
T^T V^max — ^min/ 

Based on the convolution formula for the product of two uniform densities, 
(1) Generate two IID uniform variates, Ux ~ C/(0,1) and U2 ~ U(0,1) 
(2) ReturnX = a + bUlU2 

double logarithmic(  double xMin,   double xMax   ) 
{ 

assert. ( xMin < xMax ); 

double a = xMin;        // location parameter 
double b = xMax - xMin;   // scale parameter 
return a + b * uni£orm( 0., 1. ) * uniform( 0., 1. ); 

The probability density function and the cumulative distribution function are shown in Figures 29 and 30, respec- 
tively. 

0- 

Figure 29. Logarithmic Density Function. Figure 30. Logarithmic Distribution Function. 
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5.1.14  Logistic 

Density Function: 

Distribution Function: 

Input 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

1      e 
fW=T 

,(x-aVb 

F(X) = 

b [l + eW>]2 

1 

—OO < X < oo 

-OO < X < oo 
1 + e-{x-a)lb 

Location parameter a, any real number; scale parameter b > 0 

x e (-co, oo) 

a 

a 

a 
_2 
!Lb2 
3 

-ln(Fr1-l) = ^,/*-a/^ 
where the xt are arranged in ascending order, F,- = UN, and i = 1,2, • • •, N 

(1) Generate U ~ U(0,1) 
(2) Return X = a - b\n{U~l -1) 

double logistic( double a, double b ) 
[ 

assert( b > 0. ); 
return a - b * log( 1. / uniform( 0., 1. ) - 1. ); 

Examples of probability density functions and cumulative distribution functions are shown in Figures 31 and 32, 
respectively. 

1- F(x) 
Z> = l/2 

0.75- /"zX^ 

0.5- 
b=2 

0.25- 

0- a=0 

1 
-3 

1 
-2 

1 
-1 

1 
0 
x 

1           1           1 
12         3 

Figure 31. Logistic Density Functions. Figure 32. Logistic Distribution Functions. 
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5.1.15  Lognormal 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

Notes: 

Examples of probability 
respectively. 

/(*) = 

F(x) = 

42na(x-a) 
exp 

[\n(x-a)-fif 

2<72 
x> a 

otherwise 

-|l+erf 

0 

In (x - a) - fi 

4la 
x > a 

otherwise 

Location parameter a, any real number, merely shifts the origin; shape parameter 
a > 0; scale parameter ß is any real number 

x e [a, oo) 

a + e" 

a + e^12 

e2f+°\e°2 _1) 

erT1(2F,- - 1) = -j=U In (JC, - a) - -£-, 

where the xt are arranged in ascending order, F, = UN, and i = 1,2, • • •, N 

H = 1 £ In*, and a2 = 1 £(lnr,. - ßf 
"  i = \ N i = l 

(1) Generate V ~ N(p, a2) 
(2) Return X = a + ev 

double  lognormal(   double a,   double mu,   double  sigma   ) 
{ 

return a  + exp(   normal(   mu,   sigma   )   ); 
] 

X ~ LN{ß, a2) if and only if \nX ~ N(ß, a2). Note that ß and o2 are not the mean 
and variance of the LN(ß, o2) distribution. To generate a lognormal random variate 

with given fi and a2, set ß = In (fi2/^ fi2 + a2) and a2 = In [(fi2 + a2)/fi2]. 

density functions and cumulative distribution functions are shown in Figures 33 and 34, 

0.9- f(x) 
f \CT=1/2 

a = 0 

0.6- \CT= 1 \ 

0.3- 

0- 

ß=\ 
a =1/2 

1 1                 1 1 1 

1- F(x) 

0.75- 
o- 

= 0        /"" 
= 1/2   / 

//ß = <\ 
0.5- /       a=l 

0.25- 
/ß=\ 

a = 1/2 

0- a = 0 
1 1                 1 1 1 

2 
x 

Figure 33. Lognormal Density Functions. Figure 34. Lognormal Distribution Functions. 
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5.1.16  Normal (Gaussian) 

Density Function: 

Distribution Function: 

Input: 
Output: 
Mode: 
Median: 
Mean: 

Variance: 
Regression Equation: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

/(*) = Jhzo 
exp 

-(x-fi)2 

2<r2 

F(*) = \ 1 + erf m 
Location parameter p, any real number; scale parameter a > 0 

x e (-oo, oo) 

M 

M 

a2 

erT1(2F,- - 1) = *,/V2<7 - plflo, 
where the xt are arranged in ascending order, F, = i/N, and i = 1,2, • • •, iV 

^ = li^anda2 = ^i(^-//)2 

(1) Independently generate Ux ~ U(-l, 1) and U2 ~ I/(-l, 1) 
(2) Set f/ = J72 + V\ (note that the square root is not necessary here) 
(3) If U < 1, return X = ft + oVK V-21nlW; otherwise, go back to step 1 

double normal(  double mu,  double sigma  ) 
{ 

assert( sigma > 0. ); 
double p, pi, p2; 
do { 

pi = uniform( -1., 1. ); 
p2 = uni£orm( -1., 1. ); 
p = pi * pi + p2 * p2; 

} while ( p >= 1. ); 
return mu + sigma * pi * sqrt( -2. * log( p ) / p ); 

} 

Notes: If X ~ N(fi, a\ then exp(X) - LN(/i, a2), the lognormal distribution. 

The probability density function and cumulative distribution function for the standard normal are shown in Figures 
35 and 36, respectively. 

Figure 35. Normal Density Function. Figure 36. Normal Distribution Function. 
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5.1.17  Parabolic 

Density Function: 

Distribution Function: 

Input: 

Output: 
Mode: 
Median: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

/(*) = 

F(X): 

l-(- 
Ab L 
(a + 2b - x)(x -a + bf 

4b1 *r •   *C x < x vmm — ■* — -*max 

xmin, minimum value of random variable; *max, maximum value of random variable; 
location parameter a = (xmiti + xmax)/2; scale parameter b = (xmm ■ 
■X ^ l^min'^max.) 

v-^min "■" ^max/'^ 

v-^min "■" -^max/'-^ 

)/2 

,)/2 

V-^min ' ■''max 

\-*max — -^minJ '•^" 

Uses the acceptance-rejection method on the above density function f(x) 

//  function to call for the Monte Carlo sampling 
double parabola( double x, double xMin, double xMax ) 
{ 

if ( x < xMin || x > xMax ) return 0.0; 

double a   = 0.5 * ( xMin + xMax );   // location parameter 
double b   = 0 .5 * ( xMax - xMin );   // scale parameter 
double yMax = 3. / ( 4. * b ); 

} 
return yMax *(l.-(x-a)*(x-a)/(b*b) ); 

// function which generates parabolic distribution 
double parabolic( double xMin, double xMax ) 
{ 

assert( xMin < xMax ); 

double a   = 0.5 * ( xMin + xMax ); 
double yMax = parabola( a, xMin, xMax ); 

// location parameter 
// max function range 

Notes: 

The probability density 
tively. 

return userSpecified( parabola, xMin, xMax, 0., yMax ); 
} 

The parabolic distribution is a special case of the beta distribution (when v = w = 2). 

function and the cumulative distribution function are shown in Figures 37 and 38, respec- 

1.5- m         ^ 

1- 

0.5- 

0- 
i         i 1                        1                        1 

0.25 0.5 
x 

0.75 

0.25 

Figure 37. Parabolic Density Function. Figure 38. Parabolic Distribution Function. 
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5.1.18  Pareto 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

/(*) = < 
CJTC_1    x > 1 
0 otherwise 

' \-x~c   x>\ 
0 otherwise 

Shape parameter c> 0 

x e [l,oo) 

1 
91/c 

c/(c-l)forc> 1 

[c/(c - 2)] - [c/(c - l)]2 for 0 2 

-ln(l-F,-) = cln;c, 
where the xt are arranged in ascending order, Ft = UN, and i = 1,2, • • •, iV 

(1) Generate U ~ U(0,1) 
(2) Return X = U -lie 

double pareto( double c ) 
[ 

assert( c > 0. ); 
return pow( uniform( 0., 1. ), 

} 
-1. / c ); 

Examples of probability density functions and cumulative distribution functions are shown in Figures 39 and 40, 
respectively. 

Figure 39. Pareto Density Functions. Figure 40. Pareto Distribution Functions. 
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5.1.19  Pearson's Type 5 (Inverted Gamma) 

Density Function: /(*) = 

x-(c+l)e-blx 

if x>0 
b-cr(c) 

0 otherwise 
OO 

where T(z) is the gamma function, defined by T(z) =    tz~le~' dt 
o 

rr(c,*/jc)   .x 

Distribution Function: F(X): 
m 

0 

if A: > 0 

otherwise 
oo 

where T(a, z) is the incomplete gamma function, defined by T(a, z) = J t"-le-'dt 

Input: Scale parameter b > 0; shape parameter c> 0 

Output: X £ [0, oo) 

Mode: b/(c+l) 

Mean: £>/(c-l)forol 

Variance: *2/[(c-l)2(c-2)]forc>2 

Algorithm: (1) Generate Y ~ gamma (0, lib, c) 
(2) Return X = \IY 

Source Code: double pearson5(   double b,   double c   ) 
f 

assert(  b  >  0.   SS  c   >  0.   ); 
return 1.  / gamma(   0.,   1.  /b  ,   c); 

} 

Notes: X ~ PearsonType5(Z?, c) if and only if l/X ~ gamma (0, \lb,c). Thus, the Pearson 
Type 5 distribution is sometimes called the inverted gamma distribution. 

Examples of probability density functions and cumulative distribution functions are shown in Figures 41 and 42, 
respectively. 

1.5- 

1- 

0.5 

0- 

Figure 41. Pearson type 5 Density Functions. Figure 42. Pearson Type 5 Distribution Functions. 

32 



5.1.20  Pearson's Type 6 

Density Function: /(*) = 

(x/b) v-l 

if JC>0 
bB(v, w)[l + (x/b)]"» 

0 otherwise 
l 

where B(v, w) is the Beta function, defined by B(v, w) = j tv~l(l - t)w~ldt 

Distribution Function: 

Input: 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code 

Notes 

r  x   ^ 
<B \x + b) 

if x>0 

F(x) = 
0 otherwise 

where FB(;c) is the distribution function of a B(v, w) random variable 

Scale parameter b > 0; shape parameters v > 0 and w > 0 

x e [0, oo) 

*^i>    ifv.l 
(w+1) 

0 otherwise 

bv 

w— 1 
for w > 1 

b2v(v + w-l) 
for w > 2 

(w-l)2(w-2) 
(1) Generate Y ~ gamma (0, v, *) and Z ~ gamma (0, w,b) 
(2) Return X = Y/Z 

double pearson6( double b, double v, double w ) 
{ 

assert(  b>0.   ssv>0.   ssw>0.   ); 
return gamma( 0., b, v) / gamma( 0., b, w ); 

J 
X ~ PearsonType6(l, v, w) if and only if Xl(\ + X)~ B(v, w). 

Examples of probability density functions and cumulative distribution functions are shown in Figures 43 and 44, 
respectively. 

1.5- 

0.5- 

Figure 43. Pearson Type 6 Density Functions. Figure 44. Pearson Type 6 Distribution Functions. 
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5.1.21   Power 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

Notes: 

/(*) = cxc~l   0 < x < 1 

F(x) = xc   0 < x < 1 

Shape parameter c> 0 

X  G [0, 1) 

Jo   if c < 1 
[ 1    if c> 1 
2-i/c 

c 

(c+1) 

(c+l)2(c + 2) 

InF/ = ein*,-, 
where the xt are arranged in ascending order, F, = i/JV, and i = 1,2, • • •, N 

c = — 
1   N -l 

(1) Generate U ~ U(0,1) 
(2) Return X = U1,C 

double power(   double  c   ) 
[ 

assert(   c   >  0.   ); 
return pow(  uni£oxm(   0.,   1.   ),   1.  /c   ); 

} 

This reduces to the uniform distribution when c = 1. 

Examples of probability density functions and cumulative distribution functions are shown in Figures 45 and 46, 
respectively. 

Figure 45. Power Density Functions. Figure 46. Power Distribution Functions. 
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5.1.22  Rayleigh 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

Notes: 

/(*) = 

F(x) = 

x-a 
x-a 

exp 
x-a \

2' 

1 -exp 
x-a 

0 

b   ) 

x>a 

otherwise 

x > a 

otherwise 

Location a, any real number; scale b > 0 

x e [a, oo) 

a + blfl 

a + Wln2 

a + bjnll 

b\\-7clA) 

V-ln(l-F,) = xjb - alb, 
where the xt are arranged in ascending order, F, = UN, and i = 1,2, • • •, N 

1/2 b = *}k' 
(1) Generate U ~ U(0,1) 
(2) ReturnX = a + *V-ln£/ 

double rayleigh( double a, double b ) 
C 

assert( b > 0. ); 
return a + b * sqrt( -log( uniform( 0., 1. ) ) ); 

} 

Rayleigh is a special case of the Weibull when the shape parameter c = 2. 

Examples of the probability density function and the cumulative distribution function are shown in Figures 47 and 
48, respectively. 

0.75- 

0.5- 

0.25- 

0- 

f(x) a = 0 
b=\ 

n 1 1 1       i       i       r 
0        0.5 1 1.5        2        2.5        3 0        0.5        1 

Figure 47. Rayleigh Density Function. Figure 48. Rayleigh Distribution Function. 
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5.1.23  Student's t 

Density Function: —oo < x < oo 
...   r[(v+i)/2]f, ,^fv+1)/2 

m= V^r(v/2)[1 + Vj 
oo 

where r(z) is the gamma function, defined by T(z) =    tz~le~l dt 

Distribution Function: No closed form, in general 

Input: Shape parameter v, a positive integer (number of degrees of freedom) 

Output: x e (-00,00) 

0 

0 Median: 

Mean: 0 

Variance: v/(v-2)forv>2 

Algorithm: (1) Generate Y ~ JV(0,1) and Z ~ j2(v) 
(2) Return X = YNZ/v 

Source Code: double studentT(  int df  ) 

assert(   df   >= 1   ); 

} 
return normal( 0., 1. ) / sqrt( chlSquare( df ) / df ); 

Notes: 

Examples of the probability 
50, respectively. 

For v > 30, this distribution can be approximated with the unit normal distribution, 

density function and the cumulative distribution function are shown in Figures 49 and 

-5-4-3-2-1012345 

Figure 49. Student's t Density Functions. Figure 50. Student's t Distribution Functions. 
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5.1.24 Triangular 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

/(*) = 

F(x) = 

*min 

*min 
Xmax       X 

<x<c 

C<X<X„ 
-*min  •Amax 

\X — -^min/ 

Xmm        ** 

(■*max     Xmm)(C     -^min/ 

- V^max — •*/ 

*min ^ X < C 

c<x< Xmax 
(■*max     -^minX-^max     c) 

xmiD, minimum value of random variable; *max, maximum value of random variable; 
c, location of mode 

X  C L-^miin *max) 

C 

{ Xmax - V(jCmax-^min)(^max-c)/2  if C < (Xmin + Xmax)/2 

(xmiD + xmax + c)/3 

[3(*max ~ *min)2 + (*min + *max " 2c)2] / 72 

(1) Generate U ~ U(0,1) 

(2) Return X = ■ 
■*minX<-  ■^miii.''-' __.  if U < (C - *min)/(*max - *min) 

V(*max - *minX*max " <0(1 "#)  if Ü" > (c — *min)/(*max ~ *min) 

double triangular( double xMin, double xMax, double c ) 

assert( xMin < xMax && xMin <= c &&  c <= xMax ); 

double p = uniform( 0., 1. ), q = 1. - p; 

if ( p <= < c - xMin ) / ( xMax - xMin ) ) 
return xMin + sqrt( ( xMax - xMin ) * ( c - xMin ) * p ); 

else 
return xMax - sqrt( ( xMax - xMin ) * ( xMax - c ) * q ); 

} 

Examples of probability density functions and cumulative distribution funtions are shown in Figures 51 and 52, 
respectively. 

1- 

0- 

0.5- 

Figure 51. TWangular Density Functions. Figure 52. Triangular Distribution Functions. 
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5.1.25  Uniform 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

Notes: 

/(*) = 

F(X): 

0 
X Xrv 

1 

•'•min < X < Xn 

otherwise 

X < *min 

•*min *~ X < Xn 

-*"max *- X 

*min, minimum value of random variable; xmax, maximum value of random variable 

X  £ l.Xm[n, Xmax) 

Does not uniquely exist 

v-^min T" Xmax)/-£ 

v^min "■" -*max )' *■ 

(xtt a)
2/12 

(1) GenerateU ~U(0,1) 
(2) Return X = xmiD + (*m n)tf 

double uniform(   double xMin,   double xMax   ) 
{ 

assert(   xMin  < xMax   ); 
return xMin  +   (   xMax  -  xMin   )   * _u (); 

} 

(1) The source code for _u () referenced above is given in section 6. 
(2) The uniform distribution is the basis for most distributions in the Random class. 
(3) The uniform distribution is a special case of the beta distribution 

(when v = w = 1). 

The probability density function and the cumulative distribution function are shown in Figures 53 and 54, respec- 
tively. 

0- 

Figure 53. Uniform Density Function. Figure 54. Uniform Distribution Function. 

38 



5.1.26  User-Specified 

Density Function: 

Input: 

Output: 

Algorithm: 

Source Code: 

User-specified, nonnegative function f(x) 

f(x), nonnegative function; 
*min and xm!a, minimum and maximum value of domain; 
vmin and ymax, minimum and maximum value of function 

■* S L-*min> -*max/ 

(1) Generate A ~ U(0, Amax) and Y ~ U(ymin, vmax), 
where Amax = (*max - *min)()W - ?«*,) is the area of the rectangle that encloses 
the function over its specified doman and range 

(2) Return X = xmin + AJ(ymax - vmin) if f(X) < Y; otherwise, go back to step 1 

double userSpecified( double( *usf )( double, 
double, 
double ), 

double xMin, double xMax, 
double yMin, double yMax ) 

// function 
// xMin 
// xMax 
// domain 
// range 

f 
assert( xMin < xMax ss yMin < yMax ); 
double x, y, areaMax = ( xMax - xMin ) * ( yMax - yMin ); 

// acceptance-rejection method 
do { 

x = uniform( 0.0, areaMax ) / ( yMax - yMin ) + xMin; 
y = uniform( yMin, yMax ); 

} while ( y > usf( x, 
return x; 

xMin, xMax ) ) ; 

Notes: In order to qualify as a true probaility density function, the integral of f(x) over its 
domain must equal 1, but that is not a requirement here. As long as f(x) is nonneg- 
ative over its specified domain, it is not necessary to normalize the function. Notice 
also that an analytical formula is not necessary for this algorithm. Indeed, f(x) 
could be an arbirarily complex computer program. As long as it returns a real value 
in the range [ymia, vmax], it is suitable as a generator of a random number distribution. 

Examples of a user-specified bimodal probability density and the corresponding distribution are shown in Figures 55 
and 56, respectively. Note that it is not necessary to have knowledge of F(x), only /(*) and that the function f(x) 

can be arbitarily complex. 

2- 

1.5- 

0.5- 

0- 

0.75- 

0.5- 

0.25- 

Figure 55. User-Specified Density Function. Figure 56. User-Specified Distribution Function. 
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5.1.27  Weibull 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Median: 

Mean: 

Variance: 

Regression Equation: 

Algorithm: 

Source Code: 

Notes: 

/<*) = 

F(x) = 

c     (
x~a,c 

x-a 

1 -exp 

) exp -(^)c 

0 

x> a 

otherwise 

x> a 

0 otherwise 

Location a, any real number; scale b > 0; shape c> 0 

x e [a, oo) 

J a + b{\ - l/c)1/c   if c > 1 

| a if c < 1 

a + b{\n2)llc 

a + br[(c + l)/c] 

b2(T[(c + 2)/c]-(T[(c+l)/c])2) 

ln[- In (1 - F,-)] = c In (Xi -a)-clnb, 
where the ^,- are arranged in ascending order, F, = i/N, and i = 1,2, • ■ ■, TV 

(1) Generate U ~ t/(0,1) 
(2) Return X = a + b{- In J/)1/c 

double weibull( double a, double b, double c ) 
{ 

assert( b > 0. &s c > 0. ); 
return a  + b  *  pow(   -log(  uniform(   0.,   1.   )   ),   1.   / c   ) ,- 

} 

(1) When c = I, this becomes the exponential distribution with scale b. 
(2) When c = 2 for general b, it becomes the Rayleigh distribution. 

Examples of probability density functions and cumulative distribution functions are shown in Figures 57 and 58, 
respectively. 

Figure 57. Weibull Density Functions. Figure 58. Weibull Distribution Functions. 
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5.2       Discrete Distributions 
The discrete distributions make use of one or more of the following parameters. 

p    -   the probability of success in a single trial. 

n    -   the number of trials performed or number of samples selected. 

k    -   the number of successes in n trials or number of trials before first success. 

N   -   the number of elements in the sample (population). 

K   -   the number of successes contained in the sample. 

m   -   the number of distinct events. 

ft   -   the success rate. 

i     -   smallest integer to consider. 

j    -   largest integer to consider. 

To aid in selecting an appropriate distribution, Table 2 summarizes some characteristics of the discrete distributions. 
The subsections that follow describe each distribution in more detail. 

Table 2. Parameters and Description for Selecting the Appropriate Discrete Distribution 

Distribution Name 

Bernoulli 

Binomial 

Geometric 

Hypergeometric 

Multinomial 

Negative Binomial 

Pascal 

Poisson 

Uniform Discrete 

Parameters 

P 

n and p 

P 

7i, N, and K 

n,m,pi,- 

pandK 

pmdK 

P 

i and j 

'■'I'm 

Output 

success (1) or failure (0) 

number of successes (0 < k < n) 

number of trials before first success (0 < k < oo) 

number of successes (0 < k < min («, K)) 

number of successes of each event (1 < kt < m) 

number of failures before K accumulated successes (0 < k < oo) 

number of trials before K accumulated successes (1 < k < oo) 

number of successes (0 < k < oo) 

integer selected (i < k < j) 
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5.2.1     Bernoulli 

A Bernoulli trial is the simulation of a probabilistic event with two possible outcomes: success (X = 1) or failure 
(X = 0), where the probability of success on a single trial is p. It forms the basis for a number of other discrete dis- 
tributions. 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mode: 

Mean 

Variance: 

Maximum Likelihood: 

Algorithm: 

Source Code: 

p   if   0 

p if   1 

\-p   if   0</fc<l 

1 if   *>1 

Probability of event, p, where 0 < p < 1 

*e{0,l} 

0 if p<m 

0,1    if   1/2 

1 if   p>l/2 

P 

P(l-P) 

/? = X, the mean value of the IID Bernoulli variates 

(1) Generate U ~ (7(0,1) 

'\    ifU<p 
(2) Return X = 

0   ifU>p 

bool bernoulli( double p ) 
{ 

assert( 0. <= p s& p <= 1. ); 

return uniform)   0.,   1.   )   < p; 

Notes: (1) Notice that if p is strictly zero, then the algorithm above always returns X = 0, 
and if p is strictly one, it always returns X = 1, as it should. 

(2) The sum of n IE) Bernoulli variates generates a binomial distribution. 
Thus, the Bernoulli distribution is a special case of the binomial distribution 
when the number of trials is one. 

(3) The number of failures before the first success in a sequence of Bernoulli trials 
generates a geometric distribution. 

(4) The number of failures before the first n successes in a sequence of Bernoulli 
trials generates a negative binomial distribution. 

(5) The number of Bernoulli trials required to produce the first n successes 
generates a Pascal distribution. 
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5.2.2    Binomial 
The binomial distribution represents the probability of k successes in n independent Bernoulli trials, where the prob- 
ability of success in a single trial is p. 

Density Function: 

Distribution Function: 

/(*) = 

F(k) = 

pk(l-p)"-k   ke {0,1,•••,«} 

0 otherwise 

SO*1-" 
1 

""'    0 < k < n 

k> n 

n\ 

Input: 
Output: 
Mode: 
Mean: 
Variance: 
Maximum Likelihood: 
Algorithm: 

Source Code: 

where the binomial coefficient    . . ... 
\i )    i\(n-i)\ 

Probability of event, p, where 0 < p < 0, and number of trials, n > 1 

The number of successes k e {0,1, • • •, n } 
The integer k that satisfies p(n + 1) - 1 < k < p(n + 1) 

np 
np{\ - p) 
p = XIn, where X is the mean of the random variates 
(1) Generate n IE) Bernoulli trials Xt ~ Bernoulli(p), where i = 1, • • •, n 
(2) Return X = Xx + • • • + X„ 
int binomial( int n, double p ) 

assert( 0. <= p ss p <= 1. fifi n >= 1 ); 
int sum = 0; 
for ( int i = 0; i < n; i++ ) sum += bernoullif p ); 
return sum; 

} 

Notes: (1) The binomial reduces to the Bernoulli when n = 1. 
(2) Poisson (np) approximates binomial (n, p) when p « 1 and n » 1. 
(3) For large n, the binomial can be approximated by N(np, np), provided np > 5 

and 0.1 < p < 0.9 — and for all values of p when np > 25. 

Examples of the probability density function and the cumulative distribution function are shown in Figures 59 and 
60, respectively. 

0.3 -r 

0.2- 

0.1 

0     1 23456789    10 
Number of Successes, k 

Figure 59. Binomial Density Function. 

0123456789 
Number of Successes, k 

Figure 60. Binomial Distribution Function. 

43 



5.2.3    Geometrie 
The geometric distribution represents the probability of obtaining k failures before the first success in independent 
Bernoulli trials, where the probability of success in a single trial is p. Or, to state it in a slightly different way, it is 
the probability of having to perform k trials before achieving a success (i.e., the success itself is not counted). 

Density Function: 

Distribution Function: 

Input: 

Output 

Mode: 

Mean: 

Variance 

Maximum Likelihood: 

Algorithm: 

Source Code: 

Notes: 

/(*) = 

F(k) = - 

p(l-pf    ke{0,l,---} 

0 otherwise 

l-(l-p)*+1    *>0 

0 otherwise 

} 

Probability of event, p, where 0 < p < 1 

Number of trials before a success k e {0,1, • 

0 

(l-p)/p 

{\-p)lp2 

p = 1/(1 + X), where X is the mean value of the HD geometric variates 

(1) Generate U ~ U(0,1) 
(2) Return X = int (In Ul In (I - p)) 

int geometric(   double p   ) 
{ 

assert(   0.   < p  SS p  <  1.   ); 
return int(  log(  uniform(   0. 

} 
1.   )   )   / log(   1.   -  p   )   ); 

(1) A word of caution: There are two different definitions that are in common use 
for the geometric distribution. The other definition is the number of failures up 
to and including the first success. 

(2) The geometric distribution is the discrete analog of the exponential distribution. 
(3) If Xy, X2, ■ ■ ■ is a sequence of independent Bernoulli (p) random variates and 

X = min {i 9 X, = 1} - 1, then X ~ geometric (/?). 

Examples of the probability density function and the cumulative distribution function are shown in Figures 61 and 
62, respectively. 

0.75 

0.5- /(*) p=l/2 

0.4- 

0.3- 

0.2- 

0.1- 

0- 1       1       ,  
1       1       1       1       1       1       1       1 

0     12     3     4     5     6     7 

k 

8     9    10 

0.5- 

0.25 

Figure 61. Geometric Density Function. Figure 62. Geometric Distribution Function. 
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5.2.4    Hypergeometric 
The hypergeometric distribution represents the probability of k successes in n Bernoulli trials, drawn without 
replacement, from a population of N elements that contains K successes. 

'KYN-K^ 

Density Function: 

Distribution Function: 

Input: 

Output: 

Mean: 

Variance: 

Source Code: 

/(*) = 
k X n-k , 

N 
, where 

n\ 
*!(«-*)! 

is the binomial coefficient 

*■<*) = ]£ 

KYN-K 
k X n~i 

i=0 c J 
, where 0 < k < min (K, n) 

Notes: 

Number of trials,«; population size, N; successes contained in the population, K 

The number of successes k e {0,1, • ■ • min (AT, ri)} 

np, where p = KIN 

N-n 

int hypergeometric( int n, int N, int K ) 
[ 

assert( 0 <= n ss n <= N ); 
assert( N >= 1 SS K >= 0 ); 

int count = 0; 
for ( int i = 0; i < n; i++, N-- ) { 

double p = double( K ) / double( N ); 
if ( bernoulli( p ) ) [ count++; K—; } 

} 
return count; 

) 

hypergeometric (n, N, K) « binomial (n, K/N), provided n/N < 0.1 

Examples of the probability density function and the cumulative distribution function are shown in Figures 63 and 
64, respectively. 

1- F(x) 1 

0.75- 

0.5- 

0.25- M = 6 

0- 

iy — IU 

V - d 

1 1 
2 
k 

Figure 63. Hypergeometric Density Function. Figure 64. Hypergeometric Distribution Function. 
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5.2.5    Multinomial 
The multinomial distribution is a generalization of the binomial so that instead of two possible outcomes, success or 
failure, there are now m disjoint events that can occur, with corresponding probability ph where i € 1,2, • • •, m, and 
where px + p2 + ■ ■ ■ + pm = 1. The density function represents the probability that event 1 occurs k{ times, • • •, and 
event m occurs km times inkl + --- + km-n trials. 

Density Function: 

Input- 

Output: 

Algorithm: 

Source Code: 

f(kl,k2,---,kj- 
n\ 

*i!t2! "•*».! 

A,      *, 
Pi Pi Pm 

m       k: 

Number of trials, n > 1; 
number of disjoint events, m > 2; 
probability of each event, ph with p\+- ■ + Pm = l 

Number of times each of the m events occurs, £,- e {0, • • •, n }, 
where i = 1, • • •, m, and ki A hkm = n 

The multinomial distribution is obtained through simulation. 
(1) Generate Ut ~ £/(0,1) for i = 1, • • •, n 
(2) For each Uh locate probability subinterval that contains it and increment counts 

void multinomial( int   n, 
double p[], 
int   count[], 
int   m ) 

{ 

// trials n 
// probability vector p, 
// success vector count, 
// number of disjoint events m 

assert( m >= 2 ); 
double sum = 0.; 
for ( int bin = 0; bin < m; bin++ ) sum += p[ bin ]; 
assert( sum ==1. ); 

for ( int bin = 0; bin < m; bin++ ) count[ bin ] = 0; 

// generate n uniform variates in the interval [0,1) 

for ( int i = 0; i < n; i++ ) { 

double lower = 0., upper = 0., u = _u(); 

for ( int bin = 0; bin < m; bin++ ) { 

// locate subinterval, of length p[ bin ], 
// that contains the variate and 
// increment corresponding counter 

lower = upper; 
upper += p[ bin ]; 
if ( lower <= u && u < upper ) { count[ bin ]++; break; } 

Notes: 
] 

The multinomial distribution reduces to the binomial distribution when m = 2. 

46 



5.2.6    Negative Binomial 
The negative binomial distribution represents the probability of k failures before the 5th success in a sequence of 
independent Bernoulli trials, where the probability of success in a single trial is p. 

(s + k-l)\ 

Density Function: 

Distribution Function: 

/(*) = 

F(*) = 

*!(s-l)! 
ps(l-pf    * e {0, !,■■•> 

0 otherwise 

(5 + i-JO! jt, 

D! 
0 

/to i!(5-l)! 
otherwise 

Probability of event, p, where 0 < p < 1; number of successes s > 1 

The number of failures k e {0,1, • • •} 

| y and y + 1    if y is an integer 
|int(y)+l      otherwise 
where y = [s(l-p)- l]/p and int (y) is the smallest integer < y 

s(l-p)/p 
s(l-p)/p2 

p = i/(5 + X), where X is the mean value of the IID variates 
This algorithm is based on the convolution formula. 
(1) Generate 5 IID geometric variates, Xt ~ geometric (p) 
(2) ReturnX = X1 + --- + XJ 

int negativeBinomial(  int s,  double p  ) 
{ 

assert( s >= 1 ); 
int sum = 0; 
for   (   int i  =  0;   i   <  s;   i++   )   sum += geometric(  p   ); 
return sum; 

} 

Notes: (1) If Xu ■ • ■, Xs are geometric (p) variates, then the sum is negativeBinomial (s, p). 
(2) The negativeBinomial (1, p) reduces to geometric (p). 

Examples of the probability density function and the cumulative distribution function are shown in Figures 65 and 
66, respectively. 

Input 
Output: 

Mode: 

Mean: 

Variance: 
Maximum Likelihood: 
Algorithm: 

Source Code: 

0.15 

0.1 

0.05 

/(*) p = l/2 
5 = 5 

_ 1- F(k) 
i 

i 

0.75- I 

0.5- 

0.25- 

1 p = l/2 

0- . ' 5 = 5 

1    1    1    1   1    1    1   1    1    1    1 
0123456789    10 

1      1 
o   i    : 

i    i 
l    3    4    i 

1 
5     6 

1 
7 

1      1      1 
8     9    10 

I r i c 

Figure 65. Negative Binomial Density Function. Figure 66. Negative Binomial Distribution Function. 
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5.2.7    Pascal 
The Pascal distribution represents the probability of having to perform k trials in order to achieve s successes in a 
sequence of n independent Bernoulli trials, where the probability of success in a single trial is p. 

(*-D! 

Density Function: 

Distribution Function: 

Input: 

Output 

Mode: 

Mean 

Variance 
Maximum Likelihood: 
Algorithm: 

Source Code: 

Notes: 

/(*) = 

F(k): 

(k-s)l(s-l)\ 

0 

ps(l-p)k~s    k e {s,s + !,-••} 

k 

,t1(i-5)!(5-l)! 
0 

otherwise 

ps(,\-pts   k>s 

otherwise 

Probability of event, p, where 0 < p < 1; number of successes, 5 > 1 

The number of trials k e{s,s + l,---} 

The integer n that satisfies 1 + np > s > 1 + (n - \)p 

sip 

s(l-p)/p2 

p - sin, where n is the number of trials [unbiassed estimate is (5 - l)/(« - 1)] 
This algorithm takes advantage of the logical relationship to the negative binomial. 
Return X = negativeBinomial (s, p) + s 
int pascal( int s, double p ) 
{ 

return negativeBinomial( s, p, ) + s; 
} 

(1) The Pascal and binomial are inverses of each other in that the binomial returns 
the number of successes in a given number of trials, whereas the Pascal returns 
the number of trials required for a given number of successes. 

(2) Pascal (s, p) = negativeBinomial (5, p) + s. 
(3) Pascal (p, 1) = geometric (/?) +1. 

Examples of the probability density function and the cumulative distribution function are shown in Figures 67 and 
68, respectively. 

0.2- 

0.1- 

I     I     I     I     I     I     I     I     I     I     I     I     I 
3    4   5    6    7    8    9   10 11  12 13  14 15 

k 

1   1   1   I   1   I   r 
3    4   5    6    7    8    9   10 11  12 13  14 15 

k 

Figure 67. Pascal Density Function. Figure 68. Pascal Distribution Function. 
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5.2.8    Poisson 
The Poisson distribution represents the probability of k successes when the probability of success in each trial is 
small and the rate of occurrence, fi, is constant. 

Density Function: 

Distribution Function: 

Input: 
Output: 

Mode: 

Mean: 
Variance: 
Algorithm: 

Source Code: 

/(*) = 

F{k)-. 

%-e-»   *e{0,l,-"} 
k\ 

0 

i = 0 l- 
0 

otherwise 

*    *>0 

otherwise 

Rate of occurrence, fi > 0 
The number of successes k e {0,1, • 

f ft -1 and fi   if ft is an integer 
1 vnt(ft) otherwise 

ft 

Notes: 

Examples of the 
70, respectively. 

(1) Set a = e~M, b = 1, and i = 0 
(2) Generate UM ~ U(0,1) and replace b by bUM 

(3) If b< a, return X = i; otherwise, replace i by i + 1 and go back to step 2 

int poisson(  double mu  ) 
{ 

assert(   mu  >  0.   ); 
double b = 1.; 
int i; 
for   (   i  =  0;   b  >= exp(   -mu   );   i++   )  b *= uniform(   0.,   1.   ); 
return i -  1; 

} 

(1) The Poisson distribution is the limiting case of the binomial distribution as 
n -» oo, p -> 0 and np -» ft', binomial (n, p)« Poisson (/i), where ft = np. 

(2) For ft > 9, Poisson (fi) may be approximated with N (fi, fi), if we round to 
the nearest integer and reject negative values. 

probability density function and the cumulative distribution function are shown in Figures 69 and 

0.3- /(*) fi = 2 

0.2- 

0.1- 

0- 1   ,   .   .   .   . 
1       1       1       1       1       1 

0123456789    10 
It 

1- i r\*J 

0.75- 

0.5- 

0.25- 

0- 1 fi = 2 

1 
0 L    : ?    ; 

1 
5     4 

1 
5 
k 

1 
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1 
7 

1 
8 

1      1 
9    10 

Figure 69. Poisson Density Function. Figure 70. Poisson Distribution Function. 
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5.2.9    Uniform Discrete 

The Uniform Discrete distribution represents the probability of selecting a particular item from a set of equally prob- 
able items. 

Density Function: 

Distribution Function: 

Input 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

/<*) = 

F(k): 

1 

'max     'min "■ 1 
* ^ Vmim ' " »'max / 

otherwise 

k   tmm +1      i . <k<i _ . ,      *min — «• — «max 
'max     'min "■" 1 

1 k>L 

Minimum nteger, imin; maximum integer, imax 

"■  ^ i'min»" *' > 'max / 

Does not uniquely exist, as all values in the domain are equally probable 

~Z ('min "•" 'max) 

1 
[('max -'min+ 1)   ~ 1] 

(1) Generate U ~ C/(0,1) 
(2) Return X = *min + int([im„ -imin +l]U) 

int uniformDiscrete(  int i,   int j   ) 
{ 

assert( i < j ); 

) 
return i + int( ( j - i + 1 ) * uni£orm( 0., 1. ) ); 

Notes: (1) The distribution uniformDiscrete(0,1) is the same as Bernoulli (1/2). 
(2) Uniform Discrete distribution is the discrete analog of the uniform distribution. 

Examples of the probability density function and the cumulative distribution function are shown in Figures 71 and 
72, respectively. 

0.2- 

0.1- 

1- F(k) | 

0.8- 

0.6- 

0.4- 

0.2- 
;   .  -    9 

0- 1 
'mm        " 

'max — ' 

1 r 
0      1 2      3 

k 

Figure 71. Uniform Discrete Density Function. Figure 72. Uniform Discrete Distribution Function. 
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5.3       Empirical and Data-Driven Distributions 
The empirical and data-driven distributions make use of one or more of the following parameters. 

x    -   data point in a continuous distribution. 

F   -   cumulative distribution function for a continuous distribution. 

k    -   data point in a discrete distribution. 
p    -   probability value at a discrete data point for a discrete distribution. 

P   -   cumulative probability for a discrete distribution. 
To aid in selecting an appropriate distribution, Table 3 summarizes some characteristics of these distributions, 
subsections that follow describe each distribution in more detail. 

Table 3. Parameters and Description for Selecting the Appropriate Empirical Distribution 

The 

Distribution Name Input Output 

Empirical 

Empirical Discrete 

Sampling With and Without Replacement 

Stochastic Interpolation 

file of (xhFi) data pairs 

file of (khPi) data pairs 

file of kt data 

file of 2-D data points (xh y,) 

interpolated data point x 

selection of a data point k 

selection of a data point k 

new 2-D data point (x, y) 
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5.3.1     Empirical 

Distribution Function: 

Input: 

The distribution function is specified at a number of distinct data points and is lin- 
early interpolated at other points: 

F(x) = F(Xi) + [F(xM)-F(xt)]- for X; < x < xi+i, 
xi+\     xi 

where xh i = 0,1, • • • n are the data points, and F(xt) is the cumulative probability at 
the point xt. 

We assume that the empirical data is in the form of a histogram of n + 1 pairs of data 
points along with the corresponding cumulative probability value: 

*o F(XQ) 

xi F(xi) 

x2     F(x2) 

Output: 

Algorithm: 

Source Code: 

Notes: 

xn     F(xn), 

where F(x0) = 0, F(x„) = 1, and F(XJ) < F(xi+l). The data points are required be in 
ascending order but need not be equally spaced and the number of pairs is arbitrary. 

x e [x0, xn) 

This algorithm works by the inverse transform method. 
(1) Generate U ~ £7(0,1) 
(2) Locate index i such that F(x,) < U < F(xi+l) 

(3) Return* = «+F^J™Xi)(*»i-*i) 

double empirical( void ) 
{ 

static vector< double > x, cdf; 
static int n; 
static bool init = false; 

if ( unit ) { 
ifstream in( "empiricalDistribution" ); 
if ( !in ) [ 

cerr << "Cannot open \"empiricalDistribution\" file" << endl; 
exit( 1 ); 

} 
double value, prob; 
while ( in >> value >> prob ) {  // read in empirical data 

x.push_back( value ); 
cdf.push_back( prob ); 

} 
n = x.size(); 
init = true; 

// check that this is indeed a cumulative distribution 

} 

assert( 0. == cdf[ 0 ] && cdf[ n - 1 ] == 1. ); 
for ( int i = 1; i < n; i++ ) assert( cdf[ i - 1 ] < cdf[ i ] ); 

} 

double p = uniform( 0., 1. ); 
for ( int i = 0; i < n - 1; i++ ) 

if ( cdf[ i ] <= p ss p < cdf[ i + 1 ] > 
return x[i]+(x[i+l]-x[i]   )*(p-  cdf[ i  ]   )  / 

(   cdf[  i  +  1   ]   -  cdf[   i  ]   ); 
return x[ n -  1  ]; 

(1) The data must reside in a file named empiricalDistribution. 
(2) The number of data pairs in the file is arbitrary (and is not a required input as the 

code dynamically allocates the memory required). 
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5.3.2    Empirical Discrete 

Density Function: 

Distribution Function: 

Input: 

Output: 

Algorithm: 

Source Code: 

This is specified by a list of data pairs, (kh pt), where each pair consists of an integer 
data point, kh and the corresponding probability value, pt. 

1 = 1 

Data pairs (*,-, pt), where i = 1,2, • • •, n. The data points must be in ascending order 
by data point but need not be equally spaced and the probabilities must sum to one: 

n 

it, < kj if and only if i < j   and    £ Pi= *• 
i = 1 

x e {kuk2,---,kn} 

(1) Generate U ~ £/(0,1) 

(2) Locate index j such that £ Pi - u < 2 A 
/ = l i = i 

(3) Return X = *; 

int empiricalDiscrete( void ) 

static vector< int > k; . 
static vector< double > f[ 2 ];  // pdf is f[ 0 ] and cdf xs f[ 1 ] 
static double max; 
static int n; 
static bool init = false; 

if ( Unit ) { 
ifstream in ( "empiricalDiscrete" ); 
if ( !in ) t 

cerr << "Cannot open \"empiricalDiscrete\" file" << endl; 
exit( 1 ); 

} 
int value; 
double freq; . . 
while ( in >> value >> freq ) {  // read in empirical data 

k.push_back( value ); 
f[ 0 ].push_back( freq ); 

} 
n = k.size(); 
init = true; 

// form the cumulative distribution 

f[ 1 ].push_back( f[ 0 ][ 0 ] ); 
for ( int i = 1; i < n; i++ ) 

f[ 1 ].push_back( f[ 1 ][ i - 1 ] + f[ 0 ][ I ] ); 

// check that the integer points are in ascending order 

for ( int i = 1; i < n; i++ ) assert( k[ i - 1 ] < k[ i ] ); 

max = f[ 1 ][ n - 1 ]; 
) 
// select a uniform random number between 0 and the maximum value 

double p = uniform( 0., max ); 

// locate and return the corresponding index 

for ( int i = 0; i < n; i++ ) if ( P <= ft 1 ][ i 1 ) return k[ i ]; 
return k[ n - 1 ]; 

Notes: (1) The data must reside in a file named empiricalDiscrete. 
(2) The number of data pairs in the file is arbitrary (and is not a required input as the 

code dynamically allocates the memory required). 
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As an example, consider the following hypothetical empirical data: 
2 0.2 
3 0.4 
5 0.1 
7 0.2 
9 0.1 

The probability density function and cumulative distribution function are shown in Figures 73 and 74, respectively. 

Figure 73. Discrete Empirical Density Function. Figure 74. Discrete Empirical Distribution Function. 
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5.3.3    Sampling With and Without Replacement 

Suppose a population of size N contains K items having some attribute in common. We want to know the probabil- 
ity of getting exactly k items with this attribute in a sample size of n, where 0 < k < n. Sampling with replacement 
effectively makes each sample independent and the probability is given by the formula 

P(*) = 
n\Kk(N-K) n-k 

N" 
where 

k\(n-k)\ 
(48) 

(See the binomial distribution in section 5.2.2.) Let the data be represented by {xu ■ ■ ■, xN }. Then an algorithm for 
sampling with replacement is as follows. 

(1) Generate index / ~ UniformDiscrete (1, N). 
(2) Return data element x,. 
And, in the case of sampling without replacement, the probability is given by the formula 

'KYN-K* 

P(k,n) = 
k X n-k 

AT 
n 

where 
n 

k\(n-k)l 
(49) 

(See the hypergeometric distribution in section 5.2.4.) An algorithm for this case is as follows. 
(1) Perform a random shuffle of the data points {xu--,xN}. (See section 3.4.2 of Knuth [1969].) 
(2) Store the shuffled data in a vector. 
(3) Retrieve data by sequentially indexing the vector. 

The following source code implements both methods—i.e., sampling with and without replacement. 

double sample( bool replace = 
I 

static vector< double > v; 
static bool init = false; 
static int n; 
static int index = 0; 

true )  // Sample w or w/o replacement from a 
// distribution of 1-D data in a file 
// vector for sampling with replacement 
// flag that file has been read in 
// number of data elements in the file 
// subscript in the sequential order 

if ( unit ) { 
ifstream in( "sampleData" ); 
if ( !in ) { 

cerr << "Cannot open 
exit< 1 ); 

} 
double d; 
while ( in >> d ) v.push_back( d ); 
in.close(); 
n = v.size(); 
init = true; 
if ( replace == false ) {  // sample without replacement 

// shuffle contents of v once and for all 
// Eef: Knuth, D. E., The Art of Computer Programming, Vol. 2: 
//     Seminumerical Algorithms. London: Addison-Wesley, 1969. 

for ( int i = n - 1; i > 0; i-- ) £ 
int j = int( ( i + 1 ) * _u() ); 
swap( v[ i ], v[ j ] ); 

} 
} 

} 

// return a random sample 

if ( replace ) 
return v[ uniformDiscrete( 0, n 

else { 
assert( index < n ); 
return v[ index++ j; 

} 

1 ) ]i 
// sample w/ replacement 

// sample w/o replacement 
// retrieve elements 
// in sequential order 
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5.3.4    Stochastic Interpolation 

Sampling (with or without replacement) can only return some combination of the original data points. Stochastic 
interpolation is a more sophisticated technique that will generate new data points. It is designed to give the new data 
the same local statistical properties as the original data and is based on the following algorithm. 

(1) Translate and scale multivariate data so that each dimension has the same range: 
* ^ \* — "min^'^max ~ "min'- 

(2) Randomly select (with replacement) one of the n data points along with its nearest m - 1 neighbors x:, • • •, xm_] 
and compute the sample mean: 

1   m 

x = — £ x,. 

(3) Generate m IID uniform variates 

and set 

f 
U;~U 

1-V3(m-1)   1+V3(m-1) 
m m 

X = x+£(x,-x)t/,, 
i=i 

(4) Rescale X by (xmax - xmin) and shift to xmin. 

The following source code implements stochastic interpolation. 

// comparison functor for use in determining the neighborhood of a data point 

struct dSquared : public binary_function< point, point, bool > { 
bool operator()( point p, point q ) { 

return p.x * p.x + p.y * p.y < q.x * q.x + q.y * q.y; 
} 

}; 

point stochasticInterpolation( void ) 

// Eefs: Taylor, M. S. and J. R. Thompson, Computational Statistics s Data 
//      Analysis, Vol. 4, pp. 93-101, 1986; Thompson, J. E., Empirical Model 
//      Building, pp. 108-114, Wiley, 1989; Bodt, B. A. and M. S. Taylor, 
//      A Data Based Random Number Generator for A Multivariate Distribution 
//      A User's Manual, ARBRL-TR-02439, BRL, APG, MD, Nov. 1982. 
{ 

static vector< point > data; 
static point min, max; 
static int m; 
static double lower, upper; 
static bool init = false; 

if ( Unit ) [ 
ifstream in( "stochasticData" ); 
if ( !in ) [ 

cerr << "Cannot open \"stochasticData\" input file" << endl; 
exit( 1 ) ; 

} 

// read in the data and set min and max values 

min.x = min.y = FLT_MAX; 
max.x = max.y = FLTJMIN; 
point p; 
while ( in >> p.x >> p.y ) { 

min.x = (  p.x < min.x ? p.x  : min.x  ); 
min.y = (  p.y < min.y ? p.y  : min.y   ); 
max.x = (  p.x > max.x ? p.x  : max.x   ); 
max.y = (  p.y > max.y ? p.y  : max.y   ); 

data.push_back( p ); 
} 
in.close(); 
init = true; 
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} 

// scale the data so that each dimension will have equal weight 

for ( int i = 0; i < data.size(); i++ ) [ 

data[ i ].x = < data[ i ] .x - min.x ) / ( max.x - min.x ); 
data[ i ].y = ( data[ i ].y - min.y ) / ( max.y - min.y ); 

} 

// set m, the number of points in a neighborhood of a given point 

m = data.size() / 20;      // 5% of all the data points 
if ( m < 5  ) m = 5;       // but no less than 5 
if ( m > 20 ) m = 20;      // and no more than 20 

lower = ( 1. - sqrt( 3. * < double( m ) - 1. ) ) ) / double< m ); 
upper = ( 1. + sqrt( 3. * ( double( m ) - 1. ) ) ) / doublet m ); 

] 

// uniform random selection of a data point (with replacement) 

point origin = data[ uniforming 0, data.size() - 1 ) ]; 

// make this point the origin of the coordinate system 

for ( int n = 0; n < data.size(); n++ ) data[ n ] -= origin; 

// sort the data with respect to its distance (squared) from this origin 

sort( data.begin(), data.end(), dSquared() ); 

// find the mean value of the data in the neighborhood about this point 

point mean; 
mean.x = mean.y = 0.; 
for ( int n = 0; n < m; n++ ) mean += data[ n ]; 
mean /= double( m ); 

// select a random linear combination of the points in this neighborhood 

point p; 
p.x = p.y = 0.; 
for ( int n = 0; n < m; n++ ) { 

double rn; 
if ( m == 1 ) rn = 1.; 
else rn = uniform( lower, upper ); 

p.x += rn * ( data[ n ].x - mean.x ); 
p.y += rn * ( data[ n ].y - mean.y ); 

] 

// restore the data to its original form 

for ( int n = 0; n < data.size(); n++ ) data[ n ] += origin; 

// use the mean and the original point to translate the randomly-chosen point 

p += mean; 
p += origin; 

// scale the randomly-chosen point to the dimensions of the original data 

p.x = p.x * ( max.I - min.x ) + min.x; 
p.y = p.y * ( max.y - min.y ) + min.y; 

return p; 

Notes: (1) Notice that with the particular range on the uniform distribution in step 3 of the algorithm is 
chosen to give a mean value of Mm and a variance of (m - \)lm . 

(2) When m = 1, this reduces to the bootstrap method of sampling with replacement. 
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5.4       Bivariate Distributions 

The bivariate distributions described in this section make use of one or more of the following parameters. 

cartesiancoord    -   a Cartesian point (x, y) in two dimensions. 

sphericaicoord    -   the angles (0, <f>), where 9 is the polar angle as measured from the z-axis, and 
0 is the azimuthal angle as measured counterclockwise from the x-axis. 

p -   correlation coefficient, where -1 < p < 1. 

To aid in selecting an appropriate distribution, Table 4 summarizes some characteristics of these distributions. The 
subsections that follow describe each distribution in more detail. 

Table 4. Description and Output for Selecting the Appropriate Bivariate Distribution 

Distribution Name Description Output 

bivariateNormal normal distribution in two dimensions cartesianCoord 

bivariateUniform uniform distribution in two dimensions cartesianCoord 

corrNormal normal distribution in two dimensions with correlation cartes ianCoord 

corrUniform uniform distributionin two dimensions with correlation cartesianCoord 

spherical uniform distribution over the surface of the unit sphere sphericaicoord 

sphericalND uniform distribution over the surface of the A''-dimensional unit sphere (Xi,--- ,xN) 
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5.4.1    Bivariate Normal (Bivariate Gaussian) 

Density Function: 

Input: 

Output: 

Mode: 

Variance: 

Algorithm: 

Source Code: 

Notes: 

f(x,y) = 
1 

IK oxay 
exp< 

(x-fixY    (y-My) 
2a? 2<7? 

Location parameters (jix, fiy), any real numbers; 
scale parameters (ax, oy), any positive numbers 

x e (-oo, oo) and y e (-oo, oo) 

(Mx'My) 

(o2
x,a

2
y) 

(1) Independently generate X ~ N(0,1) and Y ~ N(0,1) 
(2) Return (fix + oxX, fiy + oyY) 

cartesianCoord bivariateNormal< double mux, double sigmaX, 
double muY, double sigmaY ) 

{ 
assert( sigmaX > 0. ss sigmaY > 0. ); 

cartesianCoord p; 
p.z = normal) mux, sigmaX ); 
p.y = normal( muY, sigmaY ); 
return p; 

} 

The variables are assumed to be uncorrelated. For correlated variables, use the cor- 
related normal distribution. 

Two examples of the distribution of points obtained via calls to this function are shown in Figures 75 and 76. 

1- 

0- 

-3- 

Figure 75. bivariateNormal( 0., 1., 0., 1.). Figure 76. bivariateNormal( 0V1., -1,05). 
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5.4.2    Bivariate Uniform 

Density Function: 

Input: 

Output: 

Algorithm: 

Source Code: 

f(x,y)-. 

1 
nab 

o<<*-*°)2 + (y:?°)2<i 
b2 

0      otherwise 

[*min> *max)> bounds along x-axis; [ymin, ymax), bounds along y-axis; 
Location parameters (x0, y0), where x0 = (xmin + xmax)/2 and y0 = (ymiD + ymax)/2; 
scale parameters (a, b), where a = (xmax - xmin)/2 and b = (ymax - ymin)/2 are derived 

Point (x, y) inside the ellipse bounded by the rectangle [xmin, xmax] x [ymin, ymax] 

(1) Independently generate X ~ f/(-l, 1) and Y ~ U(-l, 1) 
(2) If X2 + Y2 > 1, go back to step 1; otherwise go to step 3 
(3) Return (x0 + aX, y0 + bY) 

cartesianCoord bivariateUnifbrm( double xMin, double xMax, 
double yMin, double yMax ) 

{ 
assert( xMin < xMax ss yMin < yMax ); 
double xO = 0.5 * ( XMin + xMax ) ; 
double yO = 0.5 * ( yMin + yMax ); 
double a  = 0.5 * ( xMax - xMin ); 
double b = 0.5 * ( yMax - yMin ); 
double x, y; 

do C 
x = uniform( -1., 1. ); 
y = uniform( -1., 1. ); 

] while( x*x+y*y>l. ); 

cartesianCoord p; 
p.x=xO+a*x; 
p.y=yO+b*y; 
return p; 

Notes: Another choice is to use a bounding rectangle instead of a bounding ellipse. 

Two examples of the distribution of points obtained via calls to this function are shown in Figures 77 and 78. 

0.5- 

-0.5- 

-1- 

1- 

0.5- 

-0.5- 

-1- 

1000 Points 

-0.5 0.5 

Figure 77. bivariateUniform( 0., 1., 0., 1.). Figure 78. bivariateUniform( 0., 1., -1., 0S). 
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5.4.3    Correlated Normal 

Density Function: f(x, v) = exp-i  WAf 1        t 9 
1-P2 [       1-P\ 

(x-ßx)2    p(x-fix)(y-fiy) | (y-fiy)2 

la\ oxoy 2oj 

Input: 

Output: 

Mode: 

Variance: 

Correlation Coefficient: 

Algorithm: 

Source Code: 

Location parameters (fix, fiy), any real numbers; positive scale parameters (ax, ay); 
correlation coefficient, -1 < p < 1 

Point (x, y), where x e (-oo, oo) and y e (-oo, oo) 

(/**> My) 

(C72
x,a

2
y) 

P 

(1) Independently generate X ~ N(0,1) and Z ~ N(0,1) 

(2) SetY = pX + ^l-p2Z 
(3) Return (/xx + oxX, py + oyY) 

cartesianCoord corrNormal( double r, double mux, double sigmaX, 
double muY, double sigmaY ) 

assert( -1. <= r ss r <= 1. ); // bounds on corr coeff 
assert( sigmaX > 0. && sigmaY > 0. );  // positive std dev 

double x = normal(); 
double y = normal(); 

y = r * x + sqrt( 1. - r * r ) * y; 

cartesianCoord p; 
p.x = mux + sigmaX * x; 
p.y = muY + sigmaY * y; 
return p; 

// correlate the variables 

// translate and scale 

Two examples of the distribution of points obtained via calls to this function are shown in Figures 79 and 80. 

3- 3 -I     1000 Points 

p = 0.5 

1- 

0- 

-1- 

-2- 

-3- 

•vr~: -VW*   • 

. «•• •. • • .» .    .. 
• • • vi •?•.*    •  •        • VI   *J    • 

2- 

1- 

0 

-1-1 

-2 

-3-1 

1000 Points 

p = -0.75 

-2 

Figure 79. corrNormal( 0.5, 0., 1., 0., 1.). Figure 80. corrNonnal( -0.75,0., 1., 0., OS). 
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5.4.4 

Input: 

Correlated Uniform 

Output: 

Algorithm: 

Source Code: 

p, correlation coefficient, where -1 < p < 1; [;cmin, *max), bounds along *-axis; 
bW ymax), bounds along y-axis 
Location parameters (x0, y0), where x0 = (x„ J/2 and y0 = (ymin + ymax)/2; 
scale parameters (a, b), where a = (*max - xmin)/2 and 6 = (ymax - ymjn)/2 are derived 

Correlated points (x, y) inside the ellipse bounded by the rectangle [xmin, xmax] x [ymin, ymax] 

(1) Independently generate X ~ U(-l, 1) and Z ~ U(-l, 1) 
(2) If X2 + Z2 > 1, go back to step 1; otherwise go to step 3 
(3) SetY = pX + ^l-p2Z 
(4) Return (x0 + aX, y0 + bY) 

cartesianCoord corrUniform(  double r,  double xMin,  double xMax, 
double yMin,  double yMax  ) 

£ 
assert(   -1.   <= r ss r <= 1.   ); // bounds on corr coeff 
assert(  xMin  < xMax  ss yMin  < yMax  ); 
double xO  = 0.5 *   (  xMin + xMax  ); 
double yO =  0.5  *   (  yMin + yMax  ); 
double a    =  0.5  *   (  xMax - xMin  ); 
double b    =  0.5  *   (  yMax - yMin  ); 
double x,   y; 

do  { 
x = uniform)   -1.,   1.   ); 
y = uniform(   -1.,   1.   ); 

)  while   (x*x+y*y>l.   ); 

y = r  *  x +  sqrt(   1.   -   r  *  r   )   *  y; // correlate  variables 

cartesianCoord p; 
p.x  = xO   +  a   *   x; // translate  & scale 
p.y  = yO   + b  *   y; 
return p; 

Two examples of the distribution of points obtained via calls to this function are shown in Figures 81 and 82. 

1- 

0.5- 

1000 Points • *      .• •• 
P = 0.5                    . .'%?': 

.* •           «■•   • ~ 

• •      •w       • 
*         %           ■ •• ••• 

■ • •'.•5. /»• «•• •   r».    • . 

••*;*': '*'*•>•*/*: *••     • v     • - » 

••     ••         .    ••••••    „\ ." .   • •• — 

• •-    •     -• • • %•*-*•.    •  • .. »* r. • 

K" 
4« j..i. ••.•••:.-«#• •••V ...   ».•. .. ...»    »„ •.V 

• • • •      . v.s. • 
•   ••     »     • 

1                      1 i 

0.5- 

0- 

0.5 

Figure 81. corrUniform( 0.5,0., 1., 0., 1.). Figure 82. corrUniform( -0.75, 0., 1., 0., 0.5 ). 
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5.4.5    Spherical Uniform 

Density Function: f(0, <*) ■ 
sind 

;-<W.)(cos0min-cos6>max) 
for 

O<0min<0<;r 

0<<*min<^<2^ 

Distribution Function: F{0,</>): 
>-<*min)(cos6>min-cos(9)       ,__   | 0 < 0min < 9 < n 

(Ann - (*min)(COS 9min - COS 6>max) 
for 

O<<*min<0<2;r 

Input: 

Output: 

Mode: 

Mean: 

Variance: 

Algorithm: 

Source Code: 

minimum polar angle 9^ > 0; 
maximum polar angle 0max < n\ 
minimum azimuthal angle <pmia > 0; 
maximum azimuthal angle <*max < 2K 

(9, <p) pair, where 9 e [0min, 0max] and </> e [0min, <*max] 

Does not uniquely exist, as angles are uniformly distributed over the unit sphere 

( (0mm + *max)/2, (0min + 0max)/2 ) 

( («max - ömin)
2/12, (<*max - <*min)

2/12 ) 

(1) Generate Ui ~ £/(cos 0max, cos 9min) and (72 ~ U(</>min, An«)- 
(2) Return @ = cos"'(tfi) and O = J72. 

sphericalCoord spherical( double thHin, double thMax, 
double phMin, double phMaz ) 

assert( 0. <= thHin ss thMin < thMax s& thMax <= M_PI && 
0. <= phMin && phMin < phMax SS  phMax <= 2. * M_PI ); 

sphericalCoord p; 
p.polar  = acos( uniform* cos( thMax ), cos( thMin ) ) ); 
p.azimuth = uniform* phMin, phMax ); 
return p; 

Figure 83 shows 
to this function. 

the uniform random distribution of 1,000 points on the surface of the unit sphere obtained via calls 

Figure 83. Uniform Spherical Distribution via spherical(). 
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5.4.6    Spherical Uniform in N-Dimensions 
This will generate uniformly distributed points on the surface of the unit sphere in n dimensions. Whereas the previ- 
ous distribution (5.4.5) is designed to return the location angles of the points on the surface of the three-dimensional 
unit sphere, this distribution returns the Cartesian coordinates of the points and will work for an arbitrary number of 
dimensions. 

Input: 

Output: 

Algorithm: 

Source Code: 

Notes: 

Vector X to receive values; number of dimensions n 

Vector X of unit length (i.e., X\ + ■ ■ ■ + X\ = 1) 

(1) Generate n IID normal variates Xi, • • •, Xn ~ #(0,1) 

(2) Compute the distance from the origin, d = y.Xf + • • • + X\ 

(3) Return vector X/d, which now has unit length 

void sphericalND(  double x[], 
int        n  ) 

{ 
// generate a point inside the unit n-sphere by normal polar method 

// x array returns point 
// n is number of dimensions 

double r2 = 0. ; 
for ( int i = 0; i < n; i++ ) { 

xI  i ] = normal(); 
r2 += x[ i ] * x[ i ]; 

] 

// project the point onto the surface of the n-sphere by scaling 

const double A = 1. / sqrt( r2 ); 
for ( int i = 0; i < n; i++ ) x[ i ] *= A; 

} 

(1) When n = 1, this returns { - 1,+1}. 
(2) When n = 2, it generates coordinates of points on the unit circle. 
(3) When n = 3, it generates coordinates of points on the unit 3-sphere. 
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5.5       Distributions Generated From Number Theory 

This section contains two recipes for generating pseudo-random numbers through the application of number theory: 

(1) Tausworthe or Shift Register Generation of Random Bits, and 

(2) Maximal Avoidance or Sub-Random Sequences. 

5.5.1    Tausworthe Random Bit Generator 
Very fast random bit generators have been developed based on the theory of Primitive Polynomials Modulo Two 
(Tausworthe 1965). These are polynomials of the form 

Pn(x) = (x" + an-lx"-i + • • • + axx + 1) mod 2, (50) 

where n is the order and each coefficient a, is either 1 or 0. The polynomials are prime in the sense that they cannot 
be factored into lower order polynomials and they are primitive in the sense that the recurrence relation 

an = (xn + an.ix
n~l + ■ ■ ■ + axx + 1) mod 2 (51) 

will generate a string of l's and 0's that has a maximal cycle length of 2" -1 (i.e., all possible values excluding the 
case of all zeroes). Primitive polynomials of order n from 1 to 100 have been tabluated (Watson 1962). 

Since the truth table of integer addition modulo 2 is the same as "exclusive or," it is very easy to implement these 
recurrence relations in computer code. And, using the separate bits of a computer word to store a primitive polyno- 
mial allows us to deal with polynomials up to order 32, to give cycle lengths up to 4,294,967,295. 
The following code is overloaded in the C++ sense that there are actually two versions of this random bit generator. 
The first one will return a bit vector of length n, and the second version will simply return a single random bit Both 
versions are guaranteed to have a cycle length of 2" -1. 

Input: 

Output: 

Source Code: 

Notes: 

Random number seed (not zero), order n (1 < n < 32), 
and, for first version, an array to hold the bit vector 

Bit vector of length n or a single bit (i.e., 1 or 0) 

void tausworthe( bool* bitvec, unsigned n )  // returns bit vector of length n 

// It is guaranteed to cycle through all possible combinations of n bits _ 
// (except all zeros) before repeating, i.e., cycle is of maximal length 2 n-1. 
// Eef: Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterlxng, 
//     Numerical Recipes in C, Cambridge Univ. Press, Cambridge, 1988. 

assert( 1 <= n ss n <= 32 );   // length of bit vector 

if ( _seed2 s BIT[ n ] ) 
_seed2 = ( ( _seed2 * MRSK[ n ] ) « 1 ) | BIT[ 1 ]; 

else 
_seed2 <<= 1; 

for ( int i = 0; i < n; i++ ) bitvec[ i ] = _seed2 & < BIT[ n ] » x ); 

] 

bool tausworthe( unsigned n ) 
{ 

assert( 1 <= n ss n <= 32 ); 

if ( _seed2 s BIT[ n ] ) [ 
_seed2 = ( ( _seed2 '  MASK[ n ] ) « 1 ) | BIT[ 1 ]; 
return true; 

1 
else [ 

_seed2 <<= 1; 
return false; 

] 
] 

(1) The constants used in the above source code are defined in Random.h. 
(2) This generator is 3.6 times faster than bemoulli (  0.5  ). 

// returns a single random bit 

The theory underlying these techniques is quite involved, but Press et al. (1992) and sources cited therein provide a starting point. 
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5.5.2    Maximal Avoidance (Quasi-Random) 

Maximal avoidance is a technique for generating points in a multidimensional space that are simultaneously self- 
avoiding, while appearing to be random. For example, the first three plots in Figure 84 show points generated with 
this technique to demonstrate how they tend to avoid one another. The last plot shows a typical distribution obtained 
by a uniform random generator, where the clustering of points is apparent. 
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Figure 84. Maximal Avoidance Compared to Uniformly Distributed. 
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r-1/2 

The placement of points is actually not pseudo-random at all but rather quasi-random, through the clever application 
of number theory. The theory behind this technique can be found in Press et al. (1992) and the sources cited therein, 
but we can give a sense of it here. It is somewhat like imposing a Cartesian mesh over the space and then choosing 
points at the mesh points. By basing the size of the mesh on successive prime numbers and then reducing its spacing 
as the number of points increases, successive points will avoid one another and tend to fill the space in an hierarchi- 
cal manner. The actual application is much more involved than this and uses some other techniques (such as primi- 
tive polynomials modulo 2, and Gray codes) to make the whole process very efficient. The net result is that it pro 
vides a method of sampling a space that represents a compromise between systematic Cartesian sampling and uni 
form random sampling. Monte Carlo sampling on a Cartesian grid has an error term that decreases faster than N 
that one ordinarily gets with uniform random sampling. The drawback is that one needs to know how many Carte- 
sian points to select beforehand. As a consequence, one usually samples uniform randomly until a convergence cri- 
terion is met. Maximal avoidance can be considered as the best of both of these techniques. It produces an error 
term that decreases faster than N~m while at the same time providing a mechanism to stop when a tolerance crite- 
rion is met. The following code is an implementation of this technique. 

double avoidance« void )  // 1-dimension (overloaded for convenience) 

{ 
double x[ 1 ]; 
avoidance( x, 1 ); 
return x [ 0 ]; 

void avoidance( double x[]/ int ndim )   // multi-dimensional 
{ 

static const int MAXBIT = 30; 
static const int MAXDIM = 6; 

assert( ndim <= MÄXDIM ); 
static unsigned long ix[ MAXDIM + 1 ] = { 0 ]; 
static unsigned long *u[ MAXBIT + 1 ]; ... . , 
static unsigned long mdeg[ MAXDIM + 1 ] = { // degree of primitive polynomial 

0, 1, 2, 3, 3, 4, 4 

static unsigned long p[ MAXDIM + 1 ] = {  // decimal encoded interior bits 
0, 0, 1, 1, 2, 1, 4 

static unsigned long v[ MAXDIM * MAXBIT + 1 ] = { 
0,  1,  1, 1,  1,  If  1» 

3,  1, 3,  3,  1,  1, 
5,  7, 7,  3,  3,  5, 

15, 11, 5, 15, 13,  9 
}; 
static double fac; 
static int in = -1; 
int j, k; 
unsigned long i, m, pp; 

if ( in == -1 ) { 
in = 0; 
fac = 1. / < 1L « MAXBIT ); 
for ( j = 1, k = 0; j <= MAXBIT; j++, k += MAXDIM ) u[ ] ] = *v[ k ]; 
for ( k = 1; k <= MAXDIM; k++ ) { 

for ( j = 1; j <= mdeg[ k ]; j++ ) u[ j ] [ k ] «= ( MAXBIT - 3 ); 
for ( j = mdeg[ k ] + 1; j <= MAXBIT; j++ ) { 

pp = p[ k ]; 
i = u[ j - mdeg[ k ] ][ k ]; 
i "= ( i » mdeg[ k ] ); 
for ( int n = mdeg[ k ] - 1; n >= 1; n-- ) { 

if ( pp S 1 ) i *= u[ j - n ][ k ]; 
PP »= 1; 

} 
u[ j ][ k ] = i; 

} 
} 

} 
m = in++; 
for ( j = 0; j < MAXBIT; j++, m »= 1 ) if ( !( m s 1 ) ) break; 
if ( j >= MAXBIT ) exit( 1 ); 
m = j * MAXDIM; 
for ( k = 0; k < ndim; k++ ) £ 

ix[  k+l]"=v[m+k+l]; 
x[  k ]   = ix[  k + 1  ]   *  fac; 

} 
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6. DISCUSSION AND EXAMPLES 
This section presents some example applications in order to illustrate and facilitate the use of the various distribu- 
tions. Certain distributions, such as the normal and the Poisson, are probably over used and others, due to lack of 
familiarity, are probably under used. In the interests of improving this situation, the examples make use of the less 
familiar distributions. Before we present example applications, however, we first discuss some differences between 
the discrete distributions. 

6.1       Making Sense of the Discrete Distributions 
Due to the number of different discrete distributions, it can be a little confusing to know when each distribution is 
applicable. To help mitigate this confusion, let us illustrate the difference between the binomial, geometric, negative 
binomial, and Pascal distributions. Consider, then, the following sequence of trials, where " 1" signifies a success 
and "0" a failure. 

Trial: 12     3     4     5     6     7     8 
Outcome:     10     1110     0     1 

The binomial (n, p) represents the number of successes in n trials so it would evaluate as follows. 

binomial( 1 , p ) = 1 
binomial( 2 , p ) = 1 
binomial( 3 , p ) = 2 
binomial( 4 , p ) = 3 
binomial( 5 , p ) = 4 
binomial( 6 , p ) = 4 
binomial( 7 , p ) = 4 
binomial( 8 , p ) = 5 

The geometric (p) represents the number of failures before the first success. Since we have a success on the first 
trial, it evaluates as follows. 

geometric(   p   )   =  0 

The negativeBinomial (s, p) represents the number of failures before the sth success in n trials so it would evaluate 
as follows. 

negativeBinomial( 1 , p ) = 0 
negativeBinomial( 2 , p ) = 1 
negativeBinomial( 3 , p ) = 1 
negativeBinomial( 4 , p ) = 1 
negativeBinomial( 5 , p ) = 3 

The pascal (s, p) represents the number of trials in order to achieve 5 successes so it would evaluate as follows. 

pascal( 1 , p ) = 1 
pascal ( 2 , p ) = 3 
pascal( 3 , p ) = 4 
pascal( 4 , p ) = 5 
pascal( 5 , p ) = 8 
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6.2       Adding New Distributions 
We show here how it is possible to extend the list of distributions. Suppose that we want to generate random num- 
bers according to the probability density function shown in Figure 85. 

0.5- 

0.25- 

0- 

(52) 

(53) 

Figure 85. Semi-Elliptical Density Function. 

The figure is that of a semi-ellipse, and its equation is 

/(JC) = — Vl-Jc2,   where  -1<*<1. 
K 

Integrating, we find that the cumulative distribution function is 

„, x    1    Wl-x2 + sin-1(*) 
F(x) = - + , where  -1 < x < 1. 

2 it 

Now, this expression involves trancendental functions in a nonalgebraic way, which precludes inverting. But, we can 
still use the acceptance-rejection method to turn this into a random number generator. We have to do two things. 

(1) Define a function that returns a value for y, given a value for x. 
(2) Define a circular distribution that passes the function pointer to the User-Specified distribution. 

Here is the resulting source code in a form suitable for inclusion in the Random class. 

double ellipse( double x, double, double )  // Ellipse Function 

return sqrt( 1. - x * x ) / M_PI_2; 
} 

double Random::elliptical( void )  // Elliptical Distribution 

{ 
const double X_MIN - -1.; 
const double X_MAX - 1.; 
const double Y_MIN - 0.; 
const double Y_MAX - 1. / M_PI_2; 

return userSpeci£ied( ellipse, X_MIN, X_MAX, Y_MIN, y_MRX ); 
1 

And here is source code to make use of this distribution. 

»include <iostream.h> 
»include "Eandom.h" 

void main( void ) 
{ 

Random rv; 
for ( int i - 0; i < 1000; i++ ) cout << rv.elliptical() << endl; 

) 
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6.3       Bootstrap Method as an Application of Sampling 

If we are only interested in the mean value, x, of a set of data and wish to know the accuracy of the sample mean, 
then there is a handy formula available: 

-1I/2 

Standard Error of the Mean = 
1        N 

I(*,-*)2 

Aw-Ditr 
(54) 

On the other hand, if we are interested in some other metric, such as the correlation coefficient, then there is no sim- 
ple analytical formula that allows us to estimate the error. The bootstrap method was designed to address this situa- 
tion. The basic idea is that we sample the original data with replacement to obtain a synthetic data set of another N 
data points, and, from this, we compute the statistic we are interested in. We then repeat this process over and over 
until we have built up a set M of computed values of the relevant statistic. We then compute the standard deviation 
of these M values; it will provide the standard error of the statistic. Given the high cost and consequent scarcity of 
data in many applications, combined with the reduced cost and abundance of computing power, the bootstrap 
method becomes a very attractive technique for extracting information from empirical data (Diaconis and Efron 
1983; Efron and Tibshirani 1991). The New York Times had this to say: 

A new technique that involves powerful computer calculations is greatly enhancing the statistical 
analysis of problems in virtually all fields of science. The method, which is now surging into 
practical use after a decade of refinement, allows statisticians to determine more accurately the 
reliability of data analysis in subjects ranging from politics to medicine to particle physics.... 
(Nov. 8, 1988.C1.C6). 

Here, we give an example of how sampling may be applied to empirical data in order to compute a bootstrap error 
estimate. The data consist of 150 spall fragments that were collected when a penetrator perforated a plate of armor. 
Each spall fragment was weighed and the dimensionless shape factor (see section 3.7 for the definition) was mea- 
sured from 16 different directions in order to compute an average shape factor. Thus, the experimental data consist 
of 150 mass, average shape factor pairs. The question arises as to whether there is any correlation between mass and 
average shape factor. For example, one might expect small fragments to be more compact and large fragments to be 
more irregular in shape. This would be reflected in a positive correlation coefficient. The correlation coefficient 
computed from the original experimental data is -0.132874. Since the absolute value is considerably smaller than 
1, there appears to be no correlation between mass of the fragment and its average shape factor.* Now, we would like 
to know how much variation to expect in the correlation coefficient. The 150 data pairs were put into a file called 
"sampleData." The following source code then implements the bootstrap method. 

finclude <iostream.h> 
#include "Random.h" 

void main( void ) 
{ 

const int N_DATA = 150;  // number of data points 
const int N_DIMS =2;    // number of dimensions 
Random rv; 

double data[ N_DIMS ]; 
for ( int i = 0; i < N_DATA; i++ ) { 

rv.sample( data, N_DIMS ); 
cout « data[ 0 ] « " " « data[ 1 ] « endl; 

} 
} 

This will generate a synthetic set of 150 data pairs, from which we compute the corresponding correlation coeffi- 
cient. We then replicate the process 128, 256, 512, and 1,024 times. After 128 replications, we find the following 
statistics on the state of correlation among the two variables, shape factor and mass. 

More formally, the value of the t statistic is -1.63094, and since I - 1.630941 < 1.96, the critical value for a two-sided test at a 0.05 signifi- 
cance level, it fails the Student t test. Consequently, we cannot reject the null hypothesis that the data pairs are uncorrelated. 
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n = 128 
min = -0.251699 
max = -0.0775172 
sum = -17.8033 
ss = 2.60043 
mean = -0.139088 
var = 0.000978001 
sd = 0.031273 
se = 0.00276417 
skew = -0.83868 
kurt = 4.44186 

The statistics after 256 replications are as follows. 

n = 256 
min = -0.247179 
max = 0.00560571 
sum = -36.5577 
ss = 5.51328 
mean = -0.142803 
var = 0.00114789 
sd = 0.0338805 
se = 0.00211753 
skew = 0.254268 
kurt = 4.59266 

The statistics after 512 replications are as follows. 

n = 512 
min = -0.247179 
max = 0.00560571 
sum = -72.0359 
ss = 10.7341 
mean = -0.140695 
var = 0.00117227 
sd = 0.0342384 
se = 0.00151314 
skew = 0.161558 
kurt = 3.91064 

The statistics after 1,024 replications are as follows. 

n = 1024 
min = -0.280715 
max = 0.00560571 
sum = -142.313 
ss = 21.0328 
mean = -0.138978 
var = 0.00122616 
sd = 0.0350165 
se = 0.00109427 
skew = 0.118935 
kurt = 4.05959 

Thus, we may say (with \-a confidence) that the correlation coeffient is -0.139 ± 0.035 and conclude that the data 
are uncorrelated. 
Performing a bootstrap on the t statistic gives the following results. 

N value of t statistic 

128 
256 
512 

1024 

-1.72921 
-1 
-1 
-1 

70181 
70739 
68787 

401098 
407198 
445316 
.428666 
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6.4       Monte Carlo Sampling to Evaluate an Integral 
A simple application of random number distributions is in the evaluation of integrals. Integration of a function of a 
single variable, f(x), is equivalent to evaluating the area that lies below the function. Thus, a simple way to esti- 
mate the integral 

f(x)dx (55) 

is to first find the bounding rectangle [a, b] x [0, y^], as shown in Figure 86; select uniform random points (X,Y) 
within the rectangle; and, for every point that satisfies the condition Y < f(X), increment the area estimate by the 
amount (b - c^y^N, where N is the total number of sample points in the bounding rectangle. 

a b 

Figure 86. Integration as an Area Evaluation via Acceptance-Rejection Algorithm 

This can be accomplished with the following source code. 

»include <iostream.h> 
»include  "Random.h" 

double f(  double x )   {  return ••• } 

void main(  void  ) 
{ 

Random rv; 

const double A    = ... 
const double B    = ... 
const double Y_MAX -  ••• 
const int   N    - ... 

double area = 0.; 
for ( int i = 0; i < N; i++ ) { 

double x = rv.uniform( A, B ); 
double y = rv.uniform( 0., Y_MAX ); 
if ( y < f( x ) ) area += ( B - A ) * Y_MAX / N; 

} 
cout « "area estimate ■ " « area « endl; 

This is essentially a binomial process with a probability of success p equal to the ratio of the area under the curve to 
the area of the bounding rectangle. The standard deviation of the area estimate, therefore (see section 5.2.2), is 

a = 
■jNp(l-p) 

N 
x area of bounding rectangle. (56) 

Note that the factor -Jp(\- p) is close to 0.5 unless we happen to have a very close-fitting bounding rectangle. This 
so-called "hit-or-miss" method is also inefficient in that two calls are made to the random number generator for 
each sample point. A more efficient method is obtained by first approximating the integral in eq. (55) by its Rie- 
mann sum: 
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f f(x) dx - £ /(*,) A*,- = (b - a) 1 2 /(*/)■ (57) 

This dispenses with the bounding rectangle and only requires uniform random points along the x-axis. Conse- 
quently, the source code can be simplified to the following. 

»include <iostream.h> 
»include "Random.h" 

double f( double x ) { return ••• ) 

void main( void ) 
{ 

Random rv; 

const double A = ••• 
const double B = ••• 
const int   N « ••• 

double sum - 0.; 
for ( int i - 0; i < N; i++ ) sum += f( rv.uniform( A, B ) ); 
cout « "area estimate - " « ( B - A ) * sum / N « endl; 

} 

Notice that eq. (57) expresses the integral as (b - a) x mean value of /. Thus, we increase accuracy to the extent 
that the points are spread uniformly over the x-axis. Maximal avoidance is perfectly suited to do this and avoid the 
clustering of points that we get with the uniform random generator. This can be accomplished by simply replacing 

rv.uniform( A, B )  =*  rv.avoidance() * ( B - A ) 

in the above source code. 
To illustrate the advantage of maximal avoidance over uniform random in a simple case, let us consider the cosine 
density: 

where a = 1/2 and b = \in. The integral can be performed analytically: 

F(x) = JM)di=± l + sin(^-^) 0<x<l, 

(58) 

(59) 

and F(l) = 1. Table 5 shows the errors with the two methods. 

Table 5. Comparison of Uniform Random and Maximal Avoidance in Monte Carlo Sampling 

Number of Uniform Random Maximal Avoidance 
Sample Points Value % Error Value % Error 

100 1.00928 +0.93 1.01231 +1.23 
1,000 0.993817 -0.6183 1.0005 +0.05 

10,000 1.00057 +0.057 1.00015 +0.015 
100,000 0.999771 -0.0229 1.00001 +0.001 

1,000,000 1.00026 +0.026 1 <io-5 

It can be shown (e.g., Press et al. [1992] pp. 309-314) that the fractional error term in maximal avoidance decreases 
as In AW, which is almost as fast as l/N. In contrast, the fractional error term in uniform random sampling 
decreases as N~m, the same as in the hit-or-miss Monte Carlo sampling (cf. eq. [56]). 
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6.5       Application of Stochastic interpolation 

The technique of stochastic interpolation is very useful in those cases where the data does not seem to fit any known 
distribution. It allows us to simulate the essential characteristics of the data without returning the same data points 
over and over again. For example, Figure 87 shows bifurcated data in the x-y plane. Without an understanding of 
the underlying mechanism, it would be very difficult to fit a distribution to this data. However, it is easy to create 
synthetic realizations using stochastic interpolation. We must first place the data in a file named "stochasticData." 
Then the following code will produce another realization such as that shown in Figure 88. 

»include <iostream.h> 
»include <stdlib.h> 
»include <unistd.h> 
»include "Random.h" 

void main( int arge, char* argv[] ) 
{ 

long seed = long( getpid() ); 
if ( arge -- 2 ) seed = atoi( argv[ 1 ] ); 

Random rv( seed ); 

for ( int i = 0; i < N_DATA; i++ ) { 
point p - rv.stochasticlnterpolation(); 
cout « p.x « " " « p.y « endl; 

} 

-6- 

Figure 87. Stochastic Data for Stochastic Interpolation.    Figure 88. Synthetic Data via Stochastic Interpolation. 
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6.6       Combining Maximal Avoidance With Distributions 
It is also possible to combine techniques. For example, we could use maximal avoidance to generate points in space 
and then perform a transformation to get the density of points appropriate for a desired distribution. This amounts to 
using maximal avoidance rather than uniform random to generate the points for transformation. However, since 
maximal avoidance is deterministic rather than pseudo-random, the price we pay is that the pattern generated will 
always be the same. Figure 89 is an example to generate bivariate normal. 

• •• •..\»3& 

Figure 89. Combining Maximal Avoidance With Bivariate Normal. 

The source code is as follows. 

»include <iostream.h> 
»include "Random.h" 

void main( void ) 
{ 

Random rv; 
const int N = 2000; 

const double MU 

// number of points 

= 0. 
const double SIGMA = 1. 
const double X_MIN = -1 
const double X_MAX = 1. 
const double Y_MIN = -1 
const double Y_MAX = 1. 

double data[ 2 ]; 

for ( int i = 0; i < N; i++ ) { 

rv.avoidance( data, 2 ); 

double X = X MIN + ( X_MAX - X_MIN ) * data[ 0 ] 
double y = Y_MIN + ( Y_MAX - Y_MIN ) * data[ 1 J 
double p=x*x+y*y; 
if ( p < 1. ) t 

cout « MU + SIGMA * x * sqrt( -2 * log( P ) / P ) « " 
« MU + SIGMA * y * sqrt( -2 

} 
* log( P ) / p ) « endl; 
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6.7       Application of Tausworthe Random Bit Vector 

Various systems in a combat vehicle are composed of critical components that are functionally related through the 
use of one or more fault trees. For instance, Figure 90 shows the fault tree for the main gun of the Ml Al tank 
(Ploskonkaetal. 1988). 

12 

13 

11 

16 

18 

10 
14 

15 

ID Description ID Description 

1 Main Gun Tube 10 Gunner's Control Handle 
2 Main Gun Breech 11 Cable 1W200-9 
3 Recoil Mechanism 12 Cable 1W104 
4 Recoil Replenisher and Hose 13 Gunner's Primary Sight - Lower Panel 
5 Main Gun Trunnions 14 Blasting Machine 
6 Turret Networks Box 15 Cable 1W105-9 
7 Electric Power - Turret 16 Cable 1W107-9 
8 Manual Elevation Pump Handle 17 Cable 1W108-9 
9 Commander's Control Handle 18 Main Gun Safety Switch 

Figure 90. Fault Tree for Main Armament of Ml Al Tank. 

Each of the 18 components comprising this diagram is considered critical because its dysfunction may have an 
adverse affect upon the gun functioning. However, as long as there is at least one continuous path of functioning 
components from the top node to the bottom node, the main gun will still function. It is clear, for example, that the 
fault tree as a whole is more sensitive to the loss of component 1 than it is to the loss of component 8. There are 
other cases where it is not so clear. Here, we show how the random bit vector can be used to rank the sensitivity of 
the components based upon the functioning of this fault tree. We need a bit vector of length n = 18 and, in order to 
generate all the possible combinations of states, we need to take 218 - 1 = 262,143 samples, the cycle length. We 
are guaranteed that each combination will occur once and only once in the cycle (although in random order). The 
following code will print out the state of each of the 18 components along with the state of the fault tree. 
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»include <iostream.h> 
»include <stdlib.h> 
»include <unistd.h> 
»include "Random.h" 

void main( void ) 
{ 

const unsigned LEN - 18; 
const int    N   - int( pow( 2, 
unsigned     seed - 123456789; 
bool c[ LEN ]; 
Random       rv; 

for ( int n - 0; n < N; n++ ) { 

rv.tausworthe( seed, LEN, c ); 

// number of components 
LEN ) - 1 );  // number of combinations 

// seed for tausworthe generator 
// boolean component array 

// assign a state to each component 

for ( int i - 0; i < LEN; i++ ) cout « c[ i ] « " "; 
c[ 0 ]  |- c[ 1 ] | o[ 2 ] | c[ 3 ] | o[ 4 ] I c[ 5 ]; 
c[ 8 ] 6- c[ 9 ]; 
c[ 8 ]  I- c[ 10 ]; 
c[ 7 ]  &-= c[ 8 ]; 
c[ 6 ]  |- c[ 7 ] | c[ 11 ] + c[ 12 ]; 
c[ 13 ] I- c[ 14 ]; 
c[ 6 ]  6- c[ 13 ]; 
c[ 0 ]  I- c[ 6 ] | c[ 15 ] I c[ 16 ] I c[ 17 3; 
cout « c[ 0 ] « endl; 

Next, we determine the correlation coefficient between each of the components and the overall state of the fault tree. 
The results are shown in Table 6. 

Table 6. Correlation Coefficient Between Component and Fault Tree Deactivation 

Component Correlation Coefficient 

1 0.024713 
2 0.024713 
3 0.024713 
4 0.024713 
5 0.024713 
6 0.024713 
7 0.00494267 
8 0.00216247 
9 0.000309005 
10 0.000309005 
11 0.00123574 
12 0.00494267 
13 0.00494267 
14 0.0179169 
15 0.0179169 
16 0.024713 
17 0.024713 
18 0.024713 

It is apparent that the components fall into groups based upon their significance to the overall fault tree. Sorting the 
components from most significant to least significant gives the results shown in Table 7. 
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Table 7. Ranking of Component Significance to Fault Tree Deactivation 

Group Components 

1 1,2,3,4,5,6,16,17, and 18 
2 14and 15 
3 7,12, and 13 
4 8 
5 11 
6 9 and 10 

This shows that components fall into six distinct classes based upon their significance to the overall fault tree. It also 
gives a certain degree of verification that the coding is correct since it tell us that all the components in a given group 
occur in the fault tree with the same footing. It is clear by examing Figure 90 that components 7, 12, and 13, for 
instance, all have the same significance to the vulnerability of the main gun. 

Now, for the case shown here, where the number of components is 18, we could easily write a program consisting of 
a series of nested loops to enumerate all 218 -1 nonzero states. However, we do not have to add very many more 
components before this direct enumeation approach will not be feasible. For instance, 30 components results in 
more than one billion possible states. The Tausworthe random bit generator provides an alternative approach. We 
could replicate, say 100,000 times, knowing that the bit vectors will be unique as well as "random." As such, it pro- 
vides a useful tool for the examination and verification of fault trees. 
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APPENDIX A: 
UNIFORM RANDOM NUMBER GENERATOR 

The underlying random number generator used is one that will generate uniformly distributed random numbers on 
the half-open interval [0,1). Any other distribution of random numbers, with few exceptions, results from mathe- 
matical transformation. Thus, it is clear that we need a good generator of random numbers U(0,1). Here we discuss 
some criteria of what constitutes a good generator. After this, we discuss some tests that can be applied and show 
the test results when applied to several candidate generators. 

A.1       Selection Criteria 

We will consider four attributes of what constitutes a good random number generator. 

• Range 
A good generator should have the capability of producing a large range of random numbers. 

• Speed 
A good generator should be fast. 

• Portability 
The generator should give the same sequence of random numbers, regardless of what computer it is run on. 
As a minimum, we need the explicit source code. 

Validation 
A good generator should exhibit apparent randomness by passing certain well-accepted validation tests. 

Six candidate generators were examined and tested for consideration as the underlying generator for U(0,1). They 
are all linear conguential generators of the form 

XM = (aX,,+ c) (modm). (A-l) 

This is a recurrence relation for generating the next number in the sequence, given the multiplier a, the increment c, 
and the modulus m. The linear conguential method is a well-accepted technique for generating a sequence of num- 
bers that take on the appearance of randomness. They possess the following properties.1'2 

They are relatively fast, requiring few arithmetic operations. 
• They produce a range of values no greater than the modulus m. 

• They have a period or cycle length no greater than m. 

• However, they are not free of sequential correlations. 
We consider two generators available in standard C libraries, rand and drand48—and thus, commonly used—and 
four versions of a generator proposed by Park and Miller.2-3 First, we give a short description of each one and list the 
source code. 

rand 
This is the ANSI C version of a random number generator and has been implemented in C as follows: 

unsigned long next = 1; 

void srand( unsigned int seed )  /* set the seed */ 
{ 

next = seed; 
) 

int rand( void )  /* return a pseudo-random number */ 
{ 

next = next * 1103515245 + 12345; 
return ( unsigned int )( next / 65536 ) % 32768; 

} 

1 Knuth, D. E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. London: Addison-Wesley, 1969. 
2 Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. New York: 

Cambridge University Press, Second Edition, 1992. 
3 Park, S. K., and K. W. Miller. Communications of the ACM. Vol. 31, pp. 1192-1201,1988. 
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- Ox330E; // 13070 
- OxABCD; // 43981 
- 0x1234; // 4660 
= 0xE66D; // 58989 
- OxDEEC; // 57068 
- 0x5; // 5 
- OxB; // 11 

[ XO, XI, X2 }; 
{ AO, Al, A2 }; 

Now, it may appear that the modulus here is 32,768, but, in fact, it is 232, due to the fact that "unsigned long" is 
32 bits in length and so modulus 232 is implicit. However, due to the fact that the returned number is "% 32768" or 
"modulo 32768" means that it is only capable of producing, at most, 32,768 distinct numbers. Thus, it has a period 
of 232 and a range no greater than 32,768. 

drand4 8 

This also is in the standard C library. This generator uses three 16-bit integer words in order to perform 48-bit arith- 
metic. The constants are a = 25,214,903,917, c = 11, and m = 248, so that it thas a very long period. 

// drand48.C: A portable implementation of drand48, this routine will 
// generate precisely the same stream of pseudo-random numbers 
// in the interval [0,1) as drand48, for the same seed value. 
// The drand48 algorithm is based on the linear congruential 
// x[n + l]-(a*x[n]+c)( mod m ), 
// where 
// a - 25214903917 (0X5DEECE66D), 
// c - 11 (OxB), and 
// m - 2~48 - 281474976710656 (0x1000000000000), 
// while using 48-bit integer arithmetic, but ignoring 
// multiplication and addition overflows of two 16-bit integers. 

static const unsigned int N_BITS - 16; 
static const double      TWO_16 - 1. / ( 1L << N_BITS ); 

static const unsigned int MASK = unsigned( 1 << ( N_BITS - 1 ) ) + 
unsigned( 1 << ( N_BITS - 1 ) ) - 1;   // 65535 

static const unsigned int X0 
static const unsigned int XI 
static const unsigned int X2 
static const unsigned int A0 
static const unsigned int Al 
static const unsigned int A2 
static const unsigned int C 

static unsigned int x[ 3 ] - 
static unsigned int a[ 3 ] - 
static unsigned int c - C; 

static void next( void ); 

void my_srand48( long seed ) 
[ 

x[ 0 ] - XO; 
x[ 1 ] - unsigned( seed ) s MASK; // store low-order bits 
x[ 2 ] - ( unsigned( seed ) >> N_BITS ) & MASK;  // store high-order bits 
a[ 0 ] - A0; 
a[ 1 ] - Al; 
a[ 2 ] = A2; 
c - C; 

} 

double drand48( void ) 
C 

next(); 
return TWO_16 * ( TWO_16 * ( TWO_16 *x[0]+x[l])+x[2]); 

} 

static void next( void ) 
t 

unsigned p[ 2 ], q[ 2 ], r[ 2 ]; 
bool    carry0, carry1, carry2; 
long    prod; 

prod  - long( a[ 0 ] ) * long( x[ 0 ] ); 
p[ 0 ] - unsigned( prod ) & MASK; 
p[ 1 ] - unsigned( prod >> N_BITS ) & MASK; 

carryO - long( p[ 0 ] ) + long( c ) > MASK; 
carry1 - long( p[ 1 ] ) + long( carryO ) > MASK; 
p[ 0 ] - unsigned( p[ 0 ] + c ) & MASK; 
p[ 1 ] - unsigned( p[ 1 ] + carryO ) s MASK; 

prod  - long( a[ 0 ] ) * long( x[ 1 ] ); 
q[ 0 ] - unsigned( prod ) S MASK; 
q[ 1 ] - unsigned( prod >> N_BITS ) 6 MASK; 
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carryO = long( p[ 1 ] ) + long( q[ 0 ] ) > MASK; 
p[ 1 ] = unsigned« p[ 1 1 + q[ 0 ] ) s MASK; 

prod  = long( a[ 1 ] ) * long( x[ 0 ] ); 
r[ 0 ] = unsigned( prod ) s MASK; 
r[ 1 ] = unsigned( prod >> N_BITS ) S MASK; 

carry2 = long( p[ 1 ] ) + long( r[ 0 ] ) > MASK; 
x[ 2 ] = unsigned« carryO + carry! + carry2 + q[ 1 ] + r[ 1 ] + 

a[ 0 ] * x[ 2 ] + a[ 1 ] * x[ 1 ] + 
a[ 2 ] * x[ 0 ] ) S MASK; 

x[ 1 ] = unsigned« p [ 1 ] + r[ 0 ] ) s MASK; 
x[ 0 ] = unsigned« p [ 0 ] ) & MASK; 

} 

ranO 

This is the "minimal" random number generator of Park and Miller.3 The constants are a = 16,807, c = 0, and 
m = 231 -1 (a Mersenne prime). It uses Schrage's method4 to implement the recurrence formula without overflow 
of a 32-bit word. It has a period of 231 - 2 = 2,147,483,646. 

// ranO.C: Minimal random number generator of Park and Miller. 
//        Returns a uniform random deviate in-[0,1) with a period of 2*31-2. 
//        set or reset seed to any integer value (except the value 0) to 
//        initialize the sequence; seed must not be altered between calls for 
//        successive deviates in the sequence. 
// Eef: Press, W. H., et al., "Numerical Recipes in C, Cambridge, 1992, p. 278 

«include <assert.h> 

double ranO« longs seed ) 

static const long  M = 2147483647;  // Mersenne prime 2*31-1 
static const long  A = 16807;       // 7*5 is a primitive root of M 
static const long  Q = 127773; 
static const long  R = 2836; 
static const double F = 1. / M; 

assert« seed != 0 ); // since it won't work if seed = 0 

long k = seed / Q; // compute seed = ( A * seed ) % M 
seed = ( seed -k*Q)*A-k*R;  // without overflow 
if ( seed < 0 ) seed += M; // by Schrage's method 

return seed * F; // convert to a floating point 
} 

rani 
This is the same as ranO, with the same constants, but also makes use of Bays-Durham shuffle5 to break up sequen- 
tial correlations inherent in the linear congruential method. 

// ranl.C: Random number generator of Park and Miller with Bays-Durham shuffle. 
//        Returns a uniform random deviate in [0,1) with a period of 2*31-2. 
//        set the seed to any integer value (except zero) to initialize the 
//        sequence; seed must not be altered between calls for successive 
//        deviates in the sequence. 
// Ref: Press, W. H., et al., "Numerical Recipes in C", Cambridge, 1992, p. 278 

»include <assert.h> 

double rani« longs seed ) 

static const long M = 2147483647;  // Mersenne prime 2*31-1 
static const long A = 16807;       // 7*5 is a primitive root of M 
static const long Q = 127773; 
static const long R =2836; 
static const double F = 1. / M; 
static const short NTAB = 32; 

3 Park, S. K., and K. W. Miller. Communications of the ACM. Vol. 31, pp. 1192-1201,1988. 
4 Schräge, L. ACM Transactions on Mathematical Software. Vol. 5, pp. 132-138,1979. 
5 Bays, C, and S. D. Durham. "Improving a Poor Random Number Generator." ACM Transactions on Mathematical Software, Vol. 2, pp. 

59-64, 1976. 
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} 

static const long  DIV - 1 + ( M - 1 ) / NTAB; 

assert) seed I» 0 );  // since it won't work if seed - 0 

static long value - 0; 
static long table[ NTAB ]; 

if ( value «- 0 ) {  // load the shuffle table the first time through 

for ( int i - NTAB +7;i>=0;i--){  // first perform 8 warm-ups 

long k » seed / Q; 
seed - A * ( seed -k*Q) - k * R; 
if ( seed < 0 ) seed +- M; 

if ( i < NTAB ) tablet i ] - seed; 
} 
value - table[ 0 ]; 

} 

long k - seed / Q; // compute seed - ( A * seed ) % M 
seed « A * ( seed -k*Q)-k*E;  // without overflow 
if ( seed < 0 ) seed +- M; // by Schräge's method 

int i - value / DIV; // Bays-Durham shuffle algorithm 
value - table[ i ] ; 
tablet i ] - seed; 

return value * F; // return a floating point 

ranlv2 

This is version 2 of rani. It uses the multiplier, a = 48,271. 

// ranlv2.C: Random number generator of Park and Miller (version 2) with 
// Bays-Durham shuffle algorithm. 
// Returns a uniform random deviate in [0,1) with a period of 2~31-2. 
// Set the seed to any integer value (except zero) to initialize the 
// sequence; seed must not be altered between calls for successive 
// deviates in the sequence. 
// Kef: Press, W. H., et al., "Numerical Recipes in C", Cambridge, 1992, p. 278 

»include <assert.h> 

double ranlv2( longs seed ) 
C 

static const long  M   = 2147483647;  // Mersenne prime 2*31-1 
static const long  A   - 48271;       // this is a prime number 
static const long   Q   - 44488; 
static const long  R   - 3399; 
static const double F   = 1. / M; 
static const short NTAB - 32; 
static const long  DIV = 1 + ( M - 1 ) / NTAB; 

assert( seed !» 0 );  // since it won't work if seed - 0 

static long value - 0; 
static long table[ NTAB ]; 

if ( value ~ 0 ) [  // load the shuffle table the first time through 

for ( int i = NTAB + 7; i >= 0; i-- ) {  // first perform 8 warm-ups 

long k - seed / Q; 
seed » A * ( seed -k*Q)-k*R; 
if ( seed < 0 ) seed += M; 

if ( i < NTAB ) tablet i ] = seed; 
} 
value - table[ 0 ]; 

} 

long k - seed / Q; // compute seed - ( A * seed ) % M 
seed - A * ( seed -k*Q)-k*R;  // without overflow 
if ( seed < 0 ) seed +» M; // by Schräge's method 

int i - value / DIV; // Bays-Durham shuffle algorithm 
value - table[ i ]; 
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table[ i ] - seed; 

return value * F; // return a floating point 

1 

ranlv3 

This is version 3 of rani. It uses the multiplier a = 69,621. 

// ranlv3.C: Minimal random number generator of Park and Miller (version 3 ). 
//        Returns a uniform random deviate in [0,1) with a period of 2*"31-2. 
//       set the seed to any integer value (except zero) to initialize the 
//        sequence; seed must not be altered between calls for successive 
//        deviates in the sequence. 
// Ref: Press, W. H., et al., "Numerical Recipes in C", Cambridge, 1992, p 

«include <assert.h> 

278 

// Mersenne prime 2*31-1 

double ranlv3( longs seed ) 

static const long M - 2147483647; 
static const long A - 69621; 
static const long Q - 30845; 
static const long R - 23902; 
static const double F - 1. / M; 
static const short NTAB - 32; 
static const long DIV - 1 + ( M - 1 ) / NTAB; 

assert( seed I- 0 );  // since it won't work if seed - 0 

static long value - 0; 
static long table[ NTAB ]; 

if ( value ~ 0 ) {  // load the shuffle table the first time through 

for ( int i - NTAB + 7; i >- 0; i-- ) [  // first perform 8 warm-ups 

long k - seed / Q; 
seed - A * ( seed -k*Q)-k*R; 
if ( seed < 0 ) seed +- M; 

if ( i < NTAB ) table[ i ] - seed; 
} 
value - tablet 0 ]; 

1 
long k - seed / Q; // compute seed - ( A * seed ) % M 
seed - A * ( seed -k*Q)-k*R;   // without overflow 
if ( seed < 0 ) seed +- M; // by Schräge's method 

int i - value / DIV; // Bays-Durham shuffle algorithm 
value - table[ i ]; 
tablet i ] - seed; 

return F * value;   // return a floating point 

One of the most important considerations when choosing a random number generator is how many distinct random 
numbers it generates. Let N be the number of random deviates requested, and let n be the actual number of distinct 
random deviates generated. Table A-l shows the results. 

Table A-l. Capability to Generate Distinct Random Numbers 

Number Actual Number Generated (% requested) 
Requested, N rand drand48       ranO      rani     ranlv2 ranlv3 

102 100 100          100            100           100 100 

103 98.20 100          100            100           100 100 

104 86.54 100            99.97       100           100 100 

105 31.15 100            99.80       100           100 100 

106 3.28 100            98.06       100           100 100 
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It is not unreasonable to require 100,000 or more random numbers for a simulation, so these results alone should dis- 
qualify rand as a serious random number generator. 

Next, let us compare the speed of the generators. Table A-2 shows the time to generate one million random deviates 
on a Silicon Graphics workstation with a 200-MHz processor. 

Table A-2. Uniform Random Number Generator Timings 

Number 
Requested, N 

10° 

Computer Time (s) 
rand  drand48  ranO  rani  ranlv2  ranlv3 

0.37    1.17    0.88   1.21    1.21     1.20 

The relative timings are as follows. 

rand: 1 
drand48: 3.2 
ranO: 2.4 
rani: 3.3 
ranlv2: 3.3 
ranlv3: 3.3 

Although drand48 is over three times slower than rand, it is a much better generator. Also, as is apparent from 
Table A-2, the computer time involved in generating uniform deviates is not likely to be a significant burden in a 
simulation. 

Since we have the source code for all six of these generators, they all satisfy the portability requirement. 

A.2      Validation Tests 
Next, we subject the six candidate random number generators to four tests of randomness. 

A.2.1    Chi-Square Test 

The chi-square test is a check that the generated random numbers are distributed uniformly over the unit interval. In 
order to compute a value of x2 from our random number generators, we first subdivide the interval [0,1] into ifc 
subintervals of equal length and then count the number nt that fall into the ith bin when a total of n random numbers 
have been generated. The computed value of x2 is obtained from the formula 

,   k 

X2 = -yL(ni-nlkf, (A-2) 
nf=i 

where 

k       is the number of bins, 
n       is the total number of random deviates, and 
rti      is the number of random deviates in the fth bin. 

As a general rule when carrying out this test, k should be at least 100 and nlk should be at least 5. As the number of 
random samples, n, was increased, we increased the number of bins, k, such that the ratio nlk remained constant at 
8. The critical value of x2 can be calculated with the aid of the formula, valid for large it, 

\3 
xli,i-a = (* -1) (l - -^—^ + z,_W2/[9(*-l)] (A-3) 

where 

k       is the numbers of bins, 
c      is the significance level, and 
Zi-a   is the 1 - a critical point of the standard normal distribution, and has the value 1.645 when a = 0.05. 

The results are displayed in Table A-3. (The seed used for all of these tests was 123456789.) All of the generators 
do about the same until the number of bins exceeds 32,768. Beyond this point, rand completely fails the chi-square 
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test This is a manifestation of the fact that rand is only capable of generating, at most, 32,768 different random 
numbers (i.e., its range). Now, a good generator may still fail the test for a particular seed. Indeed, by definition, a 
perfectly good generator should fail the test 5% of the time. So, the fact that the other generators occasionally go 
slightly above the critical value is probably not significant. The fact that both ranlv2 and ran2v3 never fail the test 
may be significant but would have to be tested further. 

Table A-3. Chi-Square Test Results (at a 0.05 Level of Significance) 

Number of Number of Critical Computed Value of x2 

Samples, n Bins, k Value rand drand48 ranO rani ranlv2 ranlv3 

1024 128 154 137 125 149 151 108 140 

2048 256 293 264 264 268 268 259 271 

4096 512 565 506 529 538 534 502 480 

8192 1024 1099 912 1031 972 972 1026 984 

16384 2048 2153 2064 2077 2021 2009 2065 1932 

32768 4096 4245 4199 4248 4141 4135 4153 3945 

65536 8192 8403 8246 8235 8416 8415 8170 8043 

131072 16384 16682 16310 16634 16712 16718 16381 16196 

262144 32768 33189 32737 32960 33122 33128 32703 32363 

524288 65536 66132 588888 65577 66154 66167 65439 64893 

1048576 131072 131914 3275060 130942 131715 131733 131104 130817 

Notice that ranlv3 does very well on this test We also ran 20 independent tests with different seeds for the case 
when n = 131,072 and k = 16,384. We found that rani failed the test three times (or 15% of the time), ranlv2 
failed the test two times (or 10% of the time), and ranlv3 never failed. 

A.2.2    Sequential Correlation Tests 
Let Uj ~ U(0,1) be the ith random number from a random number generator. Now, if the Ui's are really independent 
and identically distributed (IID) £/(0,1) random variates, then the nonoverlapping d-tuples 

Vi = (UuU2,---,Ud),    V2 = (Uä+uUd+2,---,U2ä%    ••• (A"4> 

should be IID random vectors distributed uniformly on the <f-dimensional unit hypercube, [0, l)d. Let nflfe.../, be the 
number of r^'s having first component in subinterval iu second component in subinterval i2, • • •, and dth component 
in subinterval id. Then the computed chi-square is given by the formula 

j.d    k      k k    / \2 

%\d) = -H-S   nhh...id -—A. 
n  i, = li2 = l       id = l\ K   J 

(A-5) 

That is, this quantity should have an approximate x2 distribution with kd -1 degrees of freedom. Table A-4 shows 
the test results for sequential pairs of random numbers. 

Table A-4. Two-Dimensional Chi-Square Test Results (at a 0.05 Level of Significance) 

Number of Number of Critical Computed Value of x2 

Samples, n Bins, k Value rand drand48 ranO rani ranlv2 ranlv3 

2048 162 293 263 273 256 235 276 267 

8192 322 1099 1031 1065 1066 1012 981 1053 

32768 642 4245 4053 4164 4096 3956 4015 4163 

131072 1282 16682 16138 16412 16690 16380 16303 16283 

524288 2562 66132 65442 66009 65526 65788 65507 65168 

2097152 5122 263335 260149 263072 261968 262948 262913 261518 

With one exception, ranO for 131072 samples, they all pass this test. 

Table A-5 shows the test results for sequential triplets of random numbers. 
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Table A-5. Three-Dimensional Chi-Square Test Results (at a 0.05 Level of Significance) 

Number of Number of Critical Computed Value of x2 

Samples, n Bins, k Value rand drand48 ranO        rani ranlv2 ranlv3 

512 43 83 54 65 52             69 63 63 
4096 83 565 479 522 495           519 491 536 

32768 163 4245 4210 4096 4224         4131 4071 4222 
262144 323 33189 32872 32486 32558        32626 32654 32675 

2097152 643 263335 262365 261818 261986      261716 262854 262002 

All six generators pass this test. 

A.2.3    Runs-Up Test 

This is a test for independence. Each sequence of random numbers is examined for unbroken subsequences of maxi- 
mal length within which the numbers increase monotonically; such a subsequence is called a run-up. Define 

number of runs of length i     for i = 1,2, • 
number of runs of length > 6   f or i = 6 

•,5 

and let n be the total length of the sequence. Then the test statistic is given by the formula 

6     6 1 
Ä = "ESAij («< - nbd (jij - nbj), 

(A-6) 

(A-7) 

where Atj is the y'th element of the matrix (Knuth 1969) 

"4529.4   9044.9    13568. 

A = 

and the bt's are given by 

9044.9 
13568. 
18091. 
22615. 
27892. 

(,bi,b2>- 

18097. 

27139. 

36187. 

45234. 

55789. 

27139. 

40721. 

54281. 

67852. 

83685. 

18091. 

36187. 

54281. 

72414. 

90470. 

111580. 

22615. 

45234. 

67852. 

90470. 

113262. 

139476. 

27892. 

55789. 

83685. 

111580. 

139476. 

172860. 

(A-8) 

b) = \-   5     U     19     29       * 
'  "'    '.6'24'120'720'5040'840 

(A-9) 

For large n (n > 4000), R will have an approximate chi-square distribution with 6 degrees of freedom, so that 
#6,o.95 = 12.6 for an c = 0.05 significance level. Table A-6 shows the results from this test 

Table A-6. Runs-Up Test Results (at a 0.05 Level of Significance) 

Number of 
Samples, n 

x2 

Critical Value rand drand48 
Computed Value ofR 

ranO      rani     ranlv2 ranlv3 

104 

105 

106 

12.6 
12.6 
12.6 

1.69 
4.37 
9.07 

5.69 
3.78 
5.67 

4.58 2.93          2.97 
0.92        6.27          5.54 
6.59 7.27          8.93 

7.36 
3.31 

11.8 

All the generators pass this test. 

A.2.4    Kolmogorov-Smirnov (K-S) Test 

This, like the chi-square test, is a test for uniformity. But, unlike the chi-square test, the K-S test does not require us 
to bin the data. Instead, it is a direct comparison between the empirical distribution and F(x), the cumulative distri- 
bution—which in this case, is simply F(x) = x. The K-S statistic is the largest vertical distance between the theoret- 
ical distribution and the empirical distribution. In practice, we compute 
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Dt = max \--Xi ,     D„= max *<•-■ 

i-1 and    D„ = max {£>+, £>; }. (A-10) 

We reject the null hypothesis that the generated numbers are uniformly distributed over the interval [0,1) if 

fc+0.12 + 3z)B>^> (A-ll) 

where the critical value c^ for a = 0.05, is 1.358. Table A-7 shows the test results. 

"Bible A-7. K-S Test Results (at a 0.05 Level of Significance) 

Number of K-S Computed Value o/(V« + 0.12 + 0.1 \IJn)Dn 

Samples, n Critical Value rand drand48 ranO     rani     ranlv2 ranlv3 

103 1.358 0.860 0.821 0.794     0.700        0.651 0.543 

104 1.358 0.780 0.693 0.948      0.928        0.394 0.860 

10s 1.358 0.870 0.830 0.956     0.950        1.035 0.943 

106 1.358 0.613 0.697 1.021      1.026        1.085 0.650 

We see that all six generators pass this test. 
From these four validation test results, we see that, with the exception of rand, all the generators are about the same. 
Overall, ranlv3 seems to perform the best, and so it was chosen as the uniform random number generator in the 
Random class. Incidently, it should be mentioned that the Random class permits more than one independent random 
number stream. For example, if we set 

Random rvl(   seedl   ),   rv2(  seed2   ); 

then rvl and rv2 are distinct objects so that the stream generated by rvl alone is not altered by the presence of 
rv2. This can be useful if we want to vary a selected stochastic process while retaining all other source of stochasti- 
cism. 
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APPENDIX B: 
RANDOM CLASS SOURCE CODE 

The definition and implementation of the Random class is consolidated into a single header file, Random. h. As a 
consequence, it is only necessary to include this header file in any program that makes use of random number distri- 
butions. For example, here is a simple program that makes use of the Random class. 

// Sample program for using the Random class 

#include <iostream.h> 
«include "Eandom.h" «= include the definition of the Random class 

void main( void ) 

Eandom rv; <= declare a random variate 

for ( int i - 0; i < 1000; i++ )        ,     ,      ,,..,.,.,.-, 
cout << rv.normalo <= reference the normal distribution (with default parameters) 

<< endl; 
} 

If this code is contained in the file main. C, then it can be compiled and linked into an executable program, main, 
with the aid of the GNU C++ compiler by invoking the following UNIX command. 

c++ -o main main.C -lm 

This program will set the random number seed from the UNIX process ED. If we want to set the seed explicitly to 
123456789, simply make the following replacement 

Random rv;  =»  Random rv( 123456789 ); 

If at any time later in the program we want to reset the seed, to say 773, we can do that with the following statement. 

Random rv.reset(  773   ); 

The remaining pages of this appendix contain the complete source code of the Random class. 
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// Bandom.h: Definition and Implementation of Random Number Distribution Class 

#ifndef RANDOMJB 
♦define RANDOM_H 

♦include <fstream.h> 
♦include <math.h> 
♦include <limits.h> 
♦include <unistd.h> 
♦include <assert.h> 
♦include <stl.h> 

// Constants for Tausworthe random bit generator 
// Ref: Tausworthe, Robert C, "Random Numbers Generated by Linear Recurrence 
//     Modulo Two," Mathematics of Computation, vol. 19, pp. 201-209, 1965. 

static const unsigned DEGREE_MAX =32;   // max degree (bits per word) 

static const unsigned BIT[ 1 + DEGREE_MÄX ] = [ 

// Hexidecimal Value Degree 

0x00000000, // 0 0 
0x00000001, // 2*0 1 
0x00000002, // 2*1 2 
0x00000004, // 2"2 3 
0x00000008, // 2*3 4 
0x00000010, // 2*4 5 
0x00000020, // 2" 5 6 
0x00000040, // 2" 6 7 
0x00000080, // 2*7 8 
0x00000100, // 2"8 9 
0x00000200, // 2"9 10 
0x00000400, // 2"10 11 
0x00000800, // 2-11 12 
0x00001000, // 2*12 13 
0x00002000, // 2-13 14 
0x00004000, // 2"14 15 
0x00008000, // 2-15 16 
0x00010000, // 2-16 17 
0x00020000, // 2-17 18 
0x00040000, // 2"18 19 
0x00080000, // 2-19 20 
0x00100000, // 2"20 21 
0x00200000, // 2"21 22 
0x00400000, // 2"22 23 
0x00800000, // 2*23 24 
0x01000000, // 2'24 25 
0x02000000, // 2"25 26 
0x04000000, // 2-26 27 
0x08000000, // 2'27 28 
0x10000000, // 2-28 29 
0x20000000, // 2"29 30 
0x40000000, // 2"30 31 
0x80000000 // 2"31 32 

+ BIT[3] + BIT[2], 

1; 

// Coefficients that define a primitive polynomial (mod 2) 
// Ref: Watson, E. J., "Primitive Polynomials (Hod 2)," 
//     Mathematics of Computation, vol. 16, pp. 368-369, 1962. 

static const unsigned MASK[ 1 + DEGREE_M&X ] = ( 

BIT[0 
BIT[0 
BIT[1 
BIT[1 
BIT[1 
BIT [2 
BIT[1 
BIT[1 
BIT[4 
BIT[4 
BIT [3 
BIT[2 
BIT[6 
BIT[4 
BIT[5 
BIT[1 
BIT [5 
BIT [3 
BIT[5 
BIT[5 
BIT[3 
BIT[2 
BITfl 
BIT[5 
BIT [4 
BIT[3 
BIT[6 
BIT [5 
BIT [3 
BIT[2 

■f BIT[4] 
+ BIT[3] 
+ BIT[3] 

+ BIT[1], 
+ BIT[1], 
+ BIT[1], 

+ BIT[3] + BIT[2], 

+ BIT[2] 
+ BIT[2] 

+ BIT[1], 
+ BIT[1], 

+ BIT[3] + BIT[1], 

+ BIT[2] 
+ BIT[2] 

+ BIT[1], 
+ BIT[1], 

// 0 
// 1 
// 2 
// 3 
// 4 
// 5 
// 6 
// 7 
// 8 
// 9 
// 10 
// 11 
// 12 
// 13 
// 14 
// 15 
// 16 
// 17 
// 18 
// 19 
// 20 
// 21 
// 22 
// 23 
// 24 
// 25 
// 26 
// 27 
// 28 
// 29 
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BIT[6] + BIT[4] + BIT[1], // 30 
BIT[3], // 31 
BIT[7] + BIT[5] + BIT[3] + BIT[2] + BIT[1]   // 32 

1; 

// for convenience, define some data structures for bivariate distributions 

struct cartesianCoord {  // cartesian coordinates in 2-D 

double z,   y; 
cartesianCoords operator+=(   const cartesianCoords p  )   { 

x += p.x; 
y += p-y; 
return «this; 

cartesianCoords operator-=( const cartesianCoord« p ) { 
x -= p.x; 
y -= p-y; 
return *this; 

cartesianCoord« operator*»( double scalar ) { 
x *= scalar; 
y *= scalar; 
return »this; 

cartesianCoord« operator/=( double scalar ) { 
x /= scalar; 
y /= scalar; 
return *this; 

} 
}; 

struct sphericalCoord [ // spherical coordinates on unit sphere 

double theta, phi; 
double x( void ) { return sin( theta ) * cos( phi ); ] // x-coordinate 
double y( void ) { return sin( theta ) * sin( phi ); ] // y-coordinate 
double z( void ) { return cos( theta ); } // z-coordinate 

}; 

class Random { 

// friends list 
// overloaded relational operators 

friend bool operator==( const Eandoms p, const Randoms q ) 

bool equal = ( p._seed == q._seed ) SS ( p._next == q._next ); 
for ( int i = 0; i < p._NTAB; i++ ) 

equal = equal SS ( p table[ i ] == q._table[ i ] ); 
return equal; 

} 

friend bool operator!=( const Eandoms p, const Randoms q ) 
C 

return ! ( p == q ); 
} 

// overloaded stream operator 

friend istreams operator»( istreams is. Randoms rv ) 

cout << "Enter a random number seed " 
« "(between 1 and " « L0NG_MAX - 1 « ", inclusive): " « endl; 

is >> rv._seed; 

assert( rv._seed != 0 ss rv._seed != LONG_MAX ); 

rv._seedTable(); 

return is; 
} 

public: 

Random; long seed )  // constructor to set the seed 
{ 

assert( seed != 0 SS seed != LONG_MAX ); 
_seed - seed; 
_seedTable(); 

_seed2 = _seed | 1;  // for tausworthe random bit generation 

} 

Random( void )  // default constructor uses process id to set the seed 
C 

_seed = long( getpid() ); 
_seedTable(); 
_seed2 = _seed | 1;  // for tausworthe random bit generation 

} 

"Random! void )  // default destructor 
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[ 
} 

Random( const Randoms r )  // copy constructor (copies current state) 

_seed = r._seed; 
_seed2 = r._seed2; 

// copy the current state of the shuffle table 

_next = r._next; 
for ( int i = 0; i < _NTAB; i++ ) _table[ i ] = r._table[ i ] ; 

Randoms operator=( const Randoms r )  // overloaded assignment 

if ( *this == r ) return *this; 

_seed = r._seed; 
_seed2 = r._seed2; 

// copy the current state of the shuffle table 

_next = r._next; 
for ( int i = 0; i < _NTAB; i++ ) _table[ i ] = r._table[ i ]; 

return *this; 
} 

// utility functions 

void reset( long seed )  // reset the seed explicitly 

assert( seed != 0 SS seed != L0NG_MAX ); 
_seed = seed; 
_seedTable(); 
_seed2 = _seed | 1;   //so that all bits cannot be zero 

1 

void reset( void )  // reset seed from current process id 

_seed = long( getpid() ); 
_seedTable(); 
_seed2 = _seed | 1;  //so that all bits cannot be zero 

} 

// Continuous Distributions 

double arcsine( double xMin = 0., double xHax = 1. )  // arc Sine 

double q = sin( H_PI_2 * _u() ) ; 
return XMin + ( xHax - xMin ) * q * q; 

} 

double beta( double v, double w, // Beta 
double xMin =0., double xMax = 1. )  // (v > 0. and w > 0.) 

if ( v < w ) return XMax - ( XMax - xMin ) * beta( w, v ) ; 
double y1 = gamma( 0., 1., v ); 
double y2 = gamma( 0., 1., w ); 
return xMin + ( xMax - xMin ) * yl / < yl + y2 ); 

double cauchy( double a = 0., double b = 1. )  // Cauchy (or Lorentz) 

// a is the location parameter and b is the scale parameter 
// b is the half width at half maximum (HWHM) and variance doesn't exist 

assert) b > 0. ); 

return a + b * tan( M_PI * uniform( -0.5, 0.5 ) ); 

double chiSquare( int df )  // Chi-Square 
t 

assert! df >= 1 ); 

return gamma( 0., 2., 0.5 * double! df ) ); 
} 

double cosine( double xMin =0., double xMax = 1. )  // Cosine 

assert( xHin < xHax ); 

double a = 0.5 * ( xMin + xMax );   // location parameter 
double b = ( xMax - xMin ) / M_PI;  // scale parameter 

return a + b * asin( uniform! -1., 1. ) ); 
} 

double doubleLog! double xMin = -1., double xMax = 1. )  // Double Log 
t 

assert! xMin < xMax ); 
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1 
double a = 0.5 * ( xMin + xHaz ); 

1                   double b = 0.5 * ( xMax - zHin ); 
// location parameter 
// scale parameter 

if ( bernoulli( 0.5 ) ) return a + 
else                 return a - 

} 

b * _u() * _u<); 
b * _u() * _u(); 

double erlang( double b, int c )  // 
C 

assert( b > 0. S& c >= 1 ); 

Erlang (b > 0. and c >= 1) 

double prod = 1.; 
for ( int i = 0; i < c; i++ ) prod *» _u(); 

return -b * log( prod ); 
) 
double exponential( double a = 0., double c = 1. )  // Exponential 
r                                              // location a, shape c 

assertf c > 0.0 ); 

return a - c * log( _u() ); 
] 

double extremevalue( double a = 0., double c = 1. )  // Extreme Value 
{ // location a, shape c 

assert) c > 0. ); 

return a + c * log( -log( _u() ) )r- 
) 
double fRatio ( int v, int w )  // F Ratio (v and w >= 1) 
C 

assert) v >= 1 fit w >= 1 ); 

return ( chiSquare( v ) / v ) / ( chiSquare( w ) / w ); 
) 
double gamma( double a, double b, double c )  // Gamma 
( // location a, scale b, shape c 

assert) b > 0. &s c > 0. ); 

const double A = 1. / sqrt( 2. * c - 1. ); 
const double B = c - log( 4. ); 
const double Q = c + 1. /A; 
const double T = 4.5; 
const double D = 1. + log( T ); 
const double C = 1. + c / M_E; 

if ( c < 1. ) { 
while ( true ) [ 

double p = C * _u(); 
if ( p > 1. ) { 

double y = -log( ( C - p ) / c ); 
if ( _u() <= pow( y, c - 1. ) ) return a + b * y; 

} 
else C 

double y = pow( p, 1. / c ); 
if ( _u<) <= exp( -y ) ) return a + b * y; 

} 
} 

else if ( c == 1.0 ) return exponential! a, b ); 
else [ 

while ( true ) { 
double pi = _u(); 
double p2 = _u(); 
double v = A * log( pi / ( 1. - pi ) ); 
double y = c * exp( v ); 
double z = pi * pi * p2; 
double w = B + Q*v-y; 
if(w + D-T*z>=0. 11 w >= log( z ) ) return a + b * y; 

} 
] 

} 

double laplace( double a = 0., double b = 1. )  // Laplace 
( // (or double exponential) 

assert) b > 0. ); 

// composition method 

if ( bernoulli( 0.5 ) ) return a + b * log( _u() >,- 
else return a - b * log( _u() ); 

} 

double logarithmic( double xMin =0., double xMax = 1. )  // Logarithmic 
t 

assert( xMin < xHax ); 

double a = xMin; // location parameter 
double b = xMax - xMin;  // scale parameter 
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) 

// use convolution formula for product of two IID uniform variates 

return a + b * _u() * _u(); 

double logistic( double a = 0., double c = 1. )  // Logistic 
t 

assert! c > 0. ); 

return a - c * log( 1. / _u() - 1. ); 
J 

double lognormal( double a, double mu, double sigma )  // Lognormal 
[ 

return a + exp( normal) mu, sigma ) ); 
} 

double normale double mu = 0., double sigma = 1. )  // Normal 
[ 

assert( sigma > 0. ); 

static bool f = true; 
static double p, pi, p2; 
double q; 

if ( f ) C 
do { 

pi = uniform! -1., 1. ); 
p2 = uniform! -1-, 1- ); 
p = pi * pi + p2 * p2; 

J while ( p >= 1. ); 
q = pi; 

} 
else 

q = p2; 
f = !f; 

} 
return mu + sigma * q » sqrt( -2. * log( p ) / p ); 

double parabolic ( double xMin = 0., double xMax = 1. )   // Parabolic 

assert( zMin < iMal ); 

double a   = 0.5 * ( xHin + xMax );       // location parameter 
double yMax = _parabola( a, xMin, xMax );  // maximum function range 

return userSpecified( _parabola, xHin, xMax, 0., yMax ); 
} 

double pareto( double c )  // Pareto 
{ // shape c 

assert( c > 0. ); 

return pow( _u(), -1. / c ); 
} 

double pearson5( double b, double c )  // Pearson Type 5 
[ // scale b, shape c 

assert( b > 0. &s c > 0. ); 

return 1. / gamma( 0., 1. / b, c ); 
1 

double pearson6( double b, double v, double w )  // Pearson Type 6 
{ // scale b, shape v & w 

assert( b > 0. SS v > 0. SS w > 0. ); 

return gamma( 0., b, v ) / gamma! 0., b, w ); 
} 

double power! double c )  // Power 
C // shape c 

assert! c > 0. ); 

return pow( _u!), 1. / c ); 
} 

double rayleigh( double a, double b )  // Eayleigh 
{ // location a, scale b 

assert! b > 0. ); 

return a + b * sqrt( -log( _u() ) ); 
} 

double student!( int df )  // Student's T 
t // degres of freedom df 

assert! df >= 1 ); 

return normal!) / sqrt! chisquare! df ) / df ); 
) 

double triangular( double xHin = 0.,    // Triangular 
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double xMax =1.,    // with default interval [0,1) 
double c   = 0.5 )  // and default mode 0.5 

{ 
assert( xMin < xMax s& xMin <= c SS c <= xMax ); 

double p = _u(), q = 1. - p; 

if ( p <= ( c - xMin ) / ( xMax - xMin ) ) 
return xMin + sqrt) ( xMax - xMin ) * ( c - xMin ) * p ); 

else 
return xMax - sqrt( ( xMax - xMin ) * ( xMax - c ) * q ); 

} 

double uniform( double xMin =0., double xMax = 1. )  // uniform 
[ // on [xMin,xMax) 

assert( xMin < xMax ); 

return xMin + ( xMax - xMin ) * _u(); 
} 

double userSpecified) // User-Specified Distribution 
double) *usf )( // pointer to user-specified function 

double, // x 
double, // xMin 
double ), // xMax 

double xMin, double XMax, // function domain 
double yMin, double yMax )     // function range 

{ 
assert( xMin < xMax ss yMin < yMax ); 

double x, y, areaMax = ( xMax - xMin ) * ( yMax - yMin ); 

// acceptance-rejection method 

do ( 
x = uniform) 0.0, areaMax ) / ( yMax - yMin ) + xMin; 
y = uniform) yMin, yMax ); 

] while ( y > usf( x, xMin, xMax ) ); 

return x; 
) 
double weibull( double a, double b, double c )  // Weibull 
[ // location a, scale b, 

assert) b > 0. is c > 0. ); // shape c 

return a + b * pow( -log) _u() ), 1. / c ); 
1 

// Discrete Distributions 

bool bernoulli) double p = 0.5 )  // Bernoulli Trial 
{ 

assert) 0. <= p ss p <= 1. ); 

return _u)) < p; 
} 

int binomial) int n, double p )  // Binomial 
t 

assert) n >= 1 SS 0. <= p ss p <= 1. ); 

int sum =0; 
for ( int i = 0; i < n; i++ ) sum += bernoulli) p ); 
return sum; 

} 

int geometric) double p )  // Geometric 
t 

assert) 0. < p ss p < 1. ); 

return int) log) _u() ) / log) 1. - p ) ); 
J 

int hypergeometric) int n, int N, int K ) // Hypergeometric 
{ // trials n, size N, 

assert) o <= n ss n <= H ss N >= 1 ss K >= 0 );  // successes K 

int count =0; 
for ( int i = 0; i < n; i++, N-- ) { 

double p = double) K ) / double) N ); 
if ( bernoulli) p ) ) { count++; K--; } 

J 
return count; 

} 

void multinomial) int   n, // Multinomial 
double p[], // trials n, probability vector p. 

{ 

int   count[],     // success vector count, 
int   m ) // number of disjoint events m 
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assert(  m  >= 2   );       //at least 2 events 
double  sum =  0.; 
for ( int bin = 0; bin < m; bin++ ) sum += p[ bin ];   // probabilities 
assert( sum == 1. ); // must sum to 1 

for ( int bin = 0; bin < m; bin++ ) count[ bin ] = 0;  // initialize 

// generate n uniform variates in the interval [0,1) and bin the results 

for ( int i = 0; i < n; i++ ) { 

double lower = 0., upper = 0., u = _u(); 

for ( int bin = 0; bin < m; bin++ ) [ 

// locate subinterval, which is of length p[ bin ], 
// that contains the variate and increment the corresponding counter 

lower = upper; 
upper += p[ bin ]; 
if ( lower <= u ss u < upper ) [ count[ bin ]++; break; } 

) 
) 
int negativeBinomial( int s, double p )  // Negative Binomial 
t // successes s, probability p 

assert( s >= 1 ss 0. < p ss p < 1. ); 

int sum = 0; 
for ( int i=0;i<s;i++) sum += geometric( p ); 
return sum;. 

} 

int pascal( int s, double p ) // Pascal 
[ // successes s, probability p 

return negativeBinomial( s, p ) + s; 
} 

int poisson( double mu )  // Poisson 
t 

assert ( mu > 0. ); 

double a = exp( -mu ); 
double b = 1.; 

int i; 
for ( i = 0; b >= a; i++ ) b *= _u(); 
return i - 1; 

) 
int uniformDiscrete( int i, int j )  // Uniform Discrete 
C // inclusive i to j 

assert( i < j ); 

return i + int< ( j - i + 1 ) * _u() ); 
} 

// Empirical and Data-Driven Distributions 

double empirical( void )  // Empirical Continuous 
[ 

static vector< double > x, cdf; 
static int n; 
static bool init = false; 

if ( unit ) [ 
ifstream in( "empiricalDistribution" ); 
if ( !in ) £ 

cerr << "Cannot open 
exit( 1 ); 

] 
double value, prob; 
while ( in >> value >> prob ) [  // read in empirical distribution 

x.push_back( value ); 
cdf.push_back( prob ); 

} 
n = i.size(); 
init = true; 

// check that this is indeed a cumulative distribution 

assert( 0. == cdf[ 0 ] ss cdf[ n - 1 ] == 1. ); 
for ( int i = 1; i < n; i++ ) assert( cdf[ i - 1 ] < cdf[ i J ); 

double p = _u (); 
for ( int i=0;i<n-l; i++ ) 

if ( cdf[ i ] <= p ss p < cdf[ i + 1 ] ) 
return x[ i ] + ( x[ i + 1 ] - x[ i ] ) * 

( p - cdf[ i ] ) / ( cdf[ i + 1 ] - cdf[ i ] ); 
return x[ n - 1 ]; 

} 

98 



int empiricalDiscrete( void )  // Empirical Discrete 
{ 

static vector< int >   k; 
static vector< double > ft 2 ];  // f[ 0 ] is pdf and f[ 1 ] is cdf 
static doable max; 
static int n; 
static bool init = false; 

if ( Unit ) { 
ifstream in ( "empiricalDiscrete" ); 
if ( lin ) [ 

cerr « "Cannot open 
exit( 1 ); 

} 
int value; 
double freq; 
while ( in >> value >> freq ) [  // read in empirical data 

k.push_back( value ); 
f[ 0 ].push_back( freq ); 

} 
n - k.size(); 
init = true; 

// form the cumulative distribution 

f[ 1 ].push_back( f[ 0 ][ 0 ] ); 
for ( int i = 1; i < n; i++ ) 

f[ 1 ].push_back< f[ 1 J[ i - 1 ] + f[ 0 ] [ i ] ); 

// check that the integer points are in ascending order 

for ( int i = 1; i < n; i++ ) assertf k[ i - 1 ] < k[ i ] ); 

max = ft 1 ][ n - 1 ]; 
} 

// select a uniform variate between 0 and the max value of the cdf 

double p = uniform( 0., max ); 

// locate and return the corresponding index 

for ( int i = 0; i < n; i++ ) if ( p <= f[ 1 ]t i 1 ) return k[ i ]; 
return k[ n - 1 I; 

} 

double sample( bool replace = true ) // Sample w or w/o replacement from a 
[ // distribution of 1-D data in a file 

static vector< double > v; // vector for sampling with replacement 
static bool init = false; // flag that file has been read in 
static int n; // number of data elements in the file 
static int index =0; // subscript in the sequential order 

if ( unit ) C 
ifstream in( "sampleData" ); 
if ( !in ) [ 

cerr << "Cannot open 
exit( 1 ); 

1 
double d; 
while ( in >> d ) v.push_back( d ); 
in.close(); 
n = v.size(); 
init = true; 
if ( replace == false ) (  // sample without replacement 

// shuffle contents of v once and for all 
// Ref: Knuth, D. E., The Art of Computer Programming, Vol. 2: 
//     Seminumerical Algorithms. London: Addison-Wesley, 1969. 

for ( int i = n - 1; i > 0; i-- ) ( 
int j = int( ( i + 1 ) * _u() ); 
swap{ v[ i ], v[ j ] ); 

J 
} 

) 
// return a random sample 

if ( replace ) // sample w/ replacement 
return v[ uniformDiscrete( 0, n - 1 ) ]; 

else { // sample w/o replacement 
assert« index < n ); // retrieve elements 
return v[ index++ ]; //in sequential order 

} 
} 

void sample« double x[], int ndim )  // Sample from a given distribution 
{ // of multi-dimensional data 

static const int N_DIM = 6; 
assert! ndim <= N_DIM ); 

static vector< double > v[ N_DIM ]; 
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static bool init = false; 
static int n; 

if ( unit )  { 
ifstream in( "sampleData" ); 
if ( !in ) [ 

cerr << "Cannot open 
exit( 1 ); 

} 
double d; 
while ( iin.eoff) ) [ 

for ( int i = 0; i < ndim; i++ ) ( 
in >> d; 
v[ i ].push_back( d ); 

} 
} 
in.close)); 
n = v[ 0 j.size(); 
init = true; 

} 
int index = uniformDiscrete( 0, n - 1 ) ; 
for ( int i = 0; i < ndim; i++ ) i[ i ] = v[ i ][ index ]; 

} 

// comparison functor for determining the neighborhood of a data point 

struct dSquared : 
public binary_function< cartesianCoord, cartesianCoord, bool > [ 

bool operator()( cartesianCoord p, cartesianCoord q ) t 
return p.x * p.x + p.y * p.y < q.x * q.x + q.y * q.y; 

} 
}; 

cartesianCoord stochasticInterpolation( void )  // stochastic Interpolation 

// Eefs: Taylor, M. S. and J. E. Thompson, Computational Statistics s Data 
//      Analysis, Vol. 4, pp. 93-101, 1986; Thompson, J. R., Empirical Model 
//      Building, pp. 108-114, Wiley, 1989; Bodt, B. Ä. and M. S. Taylor, 
//      A Data Based Bandom Number Generator for A Multivariate Distribution 
//      - A User's Manual, ABBRL-TK-02439, BRL, APG, MD, Nov. 1982. 
C 

static vector< cartesianCoord > data; 
static cartesianCoord min, max; 
static int m; 
static double lower, upper; 
static bool init = false; 

if ( Unit ) { 
ifstream in( "stochasticData" ); 
if ( !in ) { 

cerr << "Cannot open 
exit( 1 ); 

] 

// read in the data and set min and max values 

min.x = min.y = FLT_MAX; 
max.x = max.y = FLT_MIN; 
cartesianCoord p; 
while ( in >> p.x >> p.y ) { 

min.x = ( p.x < min.x ? p.x : min.x ) 
min.y = ( p.y < min.y ? p.y : min.y ) 
max.x = < p.x > max.x ? p.x : max.x ) 
max.y = ( p.y > max.y ? p.y : max.y ) 

data.push_back( p ); 
} 
in.close(); 
init = true; 

// scale the data so that each dimension will have equal weight 

for ( int i = 0; i < data.size(); i++ ) { 

data[ i ].x = ( data[ i J.x - min.x ) / ( max.x - min.x ); 
data[ i J.y = ( data[ i ].y - min.y ) / ( max.y - min.y ); 

} 

// set m, the number of points in a neighborhood of a given point 

m = data.size() / 20;      // 5% of all the data points 
if ( m < 5  ) m = 5;       // but no less than 5 
if ( m > 20 ) m = 20;      // and no more than 20 

lower = ( 1. - sqrt( 3. * ( double) m ) - 1. ) ) ) / doublet m ); 
upper = ( 1. + sqrt( 3. * ( double! m ) - 1. ) ) ) / double« m ); 

) 
// uniform random selection of a data point (with replacement) 

cartesianCoord origin = data[ uniformDiscrete( 0, data.size() - 1 ) ]; 
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// make this point the origin of the coordinate system 

for ( int n = 0; n < data.size(); n++ ) data! n ] -= origin; 

// sort the data with respect to its distance (squared) from this origin 

sort ( data.begin(), data.end(), dSquared() ); 

// find the mean value of the data in the neighborhood about this point 

cartesianCoord mean; 
mean.z = mean.y = 0.; 
for ( int n = 0; n < m; n++ ) mean += data[ n ]; 
mean /= double( m ); 

// select a random linear combination of the points in this neighborhood 

cartesianCoord p; 
p.x = p.y = 0.; 
for ( int n = 0; n < n++ ) [ 

double rn; 
if ( m == 1 ) rn = 1.; 
else        rn = uniform( lower, upper ); 
p.x += rn * ( data[ n 1.x - mean.x ); 
p.y += rn * ( data[ n j.y - mean.y ); 

} 

// restore the data to its original form 

for ( int n = 0; n < data.size(); n++ ) data[ n ] += origin; 

// use mean and original point to translate the randomly-chosen point 

p += mean; 
p += origin; 

// scale randomly-chosen point to the dimensions of the original data 

} 

p.x = p.x * ( max.i 
P-y = P-y * ( »ax.y 

return p; 

min.i ) + min.x; 
min.y ) + min.y; 

// Multivariate Distributions 

cartesianCoord bivariateNormal(  double mux = 0., 
double sigmaX = 1., 
double muY = 0., 
double sigmaY =1.   ) 

// Bivariate Gaussian 

I 

} 

assert( sigmaX > 0. ss sigmaY > 0. ); 

cartesianCoord p; 
p.x = normal( mux, sigmaX ); 
p.y = normal( muY, sigmaY ); 
return p; 

cartesianCoord bivariateUniform( double xMin 
double xHax 
double yMin 
double yHax 

// Bivariate uniform 

{ 
assert( xMin < xMax ss yMin < yMax ); 

double xO = 0.5 * ( XMin + xMax ); 
double yO = 0.5 * ( yMin + yMax ); 
double a = 0.5 * ( xMax - xMin ); 
double b = 0.5 * ( yMax - yMin ); 
double x, y; 

do £ 
x 
y 

uniform( -1. 
uniform( -1. 

1. ); 
1. ); 

} 

} while( x*x+y*y>l. ); 

cartesianCoord p; 
p.x = xO + a * x; 
p.y = yO + b * y; 
return p; 

cartesianCoord corrNormal( double r, 
double mux = 0., 
double sigmaX = 1., 
double muY = 0., 
double sigmaY =1. ) 

// Correlated Normal 

[ 
assert( -1. <= r ss r <= 1. ss 

sigmaX > 0. SS sigmaY > 0. ); 
// bounds on correlation coeff 
// positive std dev 
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double z = normal(); 
double y = normal(); 

y = r * i + sqrt( 1. - r * r ) * y;    // correlate the variables 

cartesianCoord p; 
p.x = mux + sigmaX * x; // translate and scale 
p.y = muY + sigmaY * y; 
return p; 

} 

cartesianCoord corrUniform) double r,       // Correlated Uniform 
double zHin = 0., 
double xMax = 1., 
double yMin = 0., 
double yMax =1. ) 

t 

} 

assert) -1. <= r SS r <= 1. ss // bounds on correlation coeff 
xHin < xHax ss yMin < yMax );  // bounds on domain 

double xO = 0.5 * ( xMin + xMax ) 
double yO = 0.5 * ( yMin + yMax ) 
double a = 0.5 * ( xMax - xMin ) 
double b = 0.5 * ( yMax - yMin ) 
double x, y; 

do [ 
x = uniform) -1., 1. ); 
y = uniform) -1-» 1. ); 

J while (x*x+y*y>l. ); 

y = r * x + sqrt( 1. - r * r ) * y;  // correlate the variables 

cartesianCoord p; 
p.x = x0 + a*x; // translate and scale 
p.y = yO + b * y; 
return p; 

sphericalCoord spherical! double thMin = 0.,     // uniform Spherical 
double thMax = M_PI, 
double phMin = 0., 
double phMax = 2. * M_PI ) 

C 

} 

assert( 0. <= thMin ss thMin < thMax ss thMax <= M_PI ss 
0. <= phMin SS phMin < phMax &&  phMax <= 2. * M_PI ); 

sphericalCoord p; // azimuth 
p.theta = acos( uniform( cos( thMax ), cos( thMin ) ) );   // polar angle 
p.phi  = uniform( phMin, phMax ); // azimuth 
return p; 

void sphericalND( double x[], int n )  // Uniform over the surface of 
// an n-dimensional unit sphere 

[ 
// generate a point inside the unit n-sphere by normal polar method 

double r2 = 0.; 
for ( int i = 0; i < n; i++ ) [ 

x[ i ] = normal(); 
r2 += x[ i ] * x[ i ]; 

} 

// project the point onto the surface of the unit n-sphere by scaling 

const double a = 1. / sqrt ( r2 ); 
for ( int i = 0; i < n; i++ ) x[ i ] *= Ä; 

) 
// Number Theoretic Distributions 

double avoidance( void )  // Maximal avoidance (1-D) 
{ // overloaded for convenience 

double x[ 1 ]; 
avoidance) x, 1 ); 
return x[ 0 ]; 

} 

void avoidance) double x[], int ndim )  // Maximal avoidance (N-D) 
{ 

static const int MAXBIT = 30; 
static const int MAXDIM = 6; 

assert) ndim <= MfiXDIM ) ; 

static unsigned long ix[ MaXDIM + 1 ] = [ 0 }; 
static unsigned long *u [ MaXBIT + 1 j; 
static unsigned long mdeg[ MAXDIM + 1 ] = { // degree of 

0, // primitive polynomial 
1, 2, 3, 3, 4, 4 

J; 
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static unsigned long p[ HAXDIH + 1 ] = t  // decimal encoded 
0, // interior bits 
0, 1, 1, 2, 1, 4 

static unsigned long v[ HAXDIH * HAXBIT + 1 ] = { 
0, 
1,  1, 1,  1,  1,  1, 
3,  1, 3,  3,  1,  1, 
5,  7, 7,  3,  3,  5, 

15, 11, 5, 15, 13,  9 
J; 

static double fac; 
static int in = -1; 
int j, k; 
unsigned long i, m, pp; 

if ( in == -1 ) C 
in = 0; 
fac = 1. / ( 1L « MAXBIT ); 
for ( j = 1, k = 0; j <= HAXBIT; j++, k += HAXDIM ) u[ j ] = sv[ k ]; 
for ( k = 1; k <= HAXDIM; k++ ) { 

for ( j = 1; j <= mdeg[ k ]; j++ ) u[ j ] I k ] «= ( HAXBIT - 3 ); 
for ( j = mdeg[ k J + 1; j <= HAXBIT; j++ ) ( 

pp = p[ k ]; 
i = u[ j " »äeg[ k ) ][ k ]; 
i -= ( i » mdeg[ k ] ); 
for ( int n = mdeg[ k ] - 1; n >= 1; n-- ) { 

if ( pp s 1 ) i "= u[ j - n ][ k J; 
pp »= 1; 

} 
u[ j ][ k ] = i; 

} 
1 

} 
m = in++; 
for ( j = 0; j < HAXBIT; j++, m >>= 1 ) if ( !< m S 1 ) ) break; 
if ( j >= HAXBIT ) exit( 1 ); 
n = j * HAXDIH; 
for ( k = 0; k < ndim; k++ ) C 

ix[ k + 1 ] *= v[ m + k + 1 ]; 
x[ k ] = ix[ k + 1 ] * fac; 

} 
} 

bool tausworthe( unsigned n )  // Tausworthe random bit generator 
{ // returns a single random bit 

assert; 1 <= n Si  n <= 32 ); 

if ( _seed2 & BIT[ n ] ) [ 
_seed2 = ( ( _seed2 * HASK[ n ] ) << 1 ) | BIT[ 1 ]; 
return true; 

} 
else { 

_seed2 «= 1; 
return false; 

} 
] 

void tausworthe( bool*   bitvec,  // Tausworthe random bit generator 
unsigned n )      // returns a bit vector of length n 

// It is guaranteed to cycle through all possible combinations of n bits_ 
// (except all zeros) before repeating, i.e., cycle has maximal length 2"n-l. 
// Kef: Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, 
//     Numerical Recipes in C, Cambridge Univ. Press, Cambridge, 1988. 

assert« 1 <= n Si  n <= 32 );  // length of bit vector 

if ( _seed2 & BIT[ n ] ) 
_seed2 = ( ( _seed2 * HASK[ n ] ) << 1 ) | BIT[ 1 ]; 

else 
_seed2 «= 1; 

for ( int i = 0; i < n; i++ ) bitvec[ i ] = _seed2 & ( BIT[ n J >> x ); 
} 

private: 

static const long  _M   = 0x7fffffff; // 2147483647 (Hersenne prime 2"31-1) 
static const long  _A   = 0xl0ff5;    // 69621 
static const long  _Q   = 0x787d;     // 30845 
static const long  _K   = 0x5d5e;     // 23902 
static const double _F   = 1. / _H; 
static const short _NTAB =32;        // arbitrary length of shuffle table 
static const long  _DIV  = 1+(_H-1)/_NTAB; 
long       _table[ _NTAB ]; // shuffle table of seeds 
long       _next; // seed to be used as index into table 
long       _seed; // current random number seed 
unsigned    _seed2; // seed for tausworthe random bit 

void _seedTable( void ) // seeds the shuffle table 

for ( int i = _NTAB + 7; i >= 0; i-- ) {     // first perform 8 warm-ups 
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long k = _seed / _Qf 
_seed = _A * ( _seed 

} 

if ( _seed < 0 ) _seed += _M 

if ( i < _NTAB ) _table[ i ] = _seed; 

// seed = ( A * seed ) % M 
k * _Q ) - k * _R;  // without overflow by 

// Schräge's method 

] 
_next = _table[ 0 ]; 

double _u( void ) 
C 

long k = _seed / _Q; 
_seed = _A * ( _seed - k * _Q ) 
if ( _seed < 0 ) _seed += _M; 

int index = _next / _DIV; 
_next = _table[ index ]; 
_table[ index ] = _seed; 

J 
return _next * _F; 

// store seeds into table 

// used as index next time 

// uniform rng 

// seed = ( A*seed ) % M 
k * _E;    // without overflow by 

// Schräge's method 

// Bays-Durham shuffle 
// seed used for next time 
// replace with new seed 

// scale value within [0,1) 

static double _parabola( double x, double xMin, double xMax )  // parabola 
t 

if ( x < xHin || x > xMax ) return 0.0; 

double a   = 0.5 » ( xMin + xMax );  // location parameter 
double b   = 0.5 * ( xMax - xMin );   // scale parameter 
double yMax = 0.75 / b; 

return yMax * ( 1. - ( x ) (x-a)/(b*b>); 

«endif 
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GLOSSARY 

Variate 
A random variable from a probability distribution. Typically, capital letters X, Y, • • • are used to denote variates. 

U~U(0,1) 
Signifies a variate U is drawn or sampled from the uniform distribution. 

IID 
Independent and identically distributed. 

Probability Density Function (PDF) 
f(k) for a discrete distribution. 
f(x) for a continuous distribution. 

Cumulative Distribution Function (CDF) 
F(k) for a discrete distribution. 
F(x) for a continuous distribution. 

Mode 
The value of k where f(k) is a global maximum for a discrete distribution. 
The value of x where f(x) is a global maximum for a continuous distribution. 

Median 
The point such that half the values are greater for a discrete distribution. If the points are ordered from smallest 
to largest, then 

[*(»+iy2 if «is odd 
medi!m   \(k*2 + kM+1)/2   if «is even 

fX^median) = 1/2 for a continuous distribution. 

Mean 
k=      X     * /(*) for a discrete distribution. 

all values of it 

DO 

x =  I xf(x)dx for a continuous distribution. 
—oo 

Variance 
o2=      2     (* - *)2/(fc)for a discrete distribution. 

all values of k 

oo 

cr2 =  f (x - x)2f(x)dx for a continuous distribution. 

Standard Deviation 
a, the square root of the variance. 

Skewness (as defined by Pearson) 
Sk = (mean - mode) / standard deviation. 

Chebyshev's Inequality 

For any distribution, Prob{ \x - x\ > kax } < p»where k is ^ positive real number. 

Leibniz's Rule 

| Jmx)duJf^du+mx),x)^-mx),x)^f. 
a(x) a(x) 
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